Advertisement

JETP Letters

, Volume 105, Issue 8, pp 497–501 | Cite as

Unconventional pairing in three-dimensional topological insulators with a warped surface state

  • A. S. Vasenko
  • A. A. Golubov
  • V. M. Silkin
  • E. V. Chulkov
Condensed Matter

Abstract

We study the effect of the Fermi surface anisotropy (hexagonal warping) on the superconducting pair potential, induced in a three-dimensional topological insulator (TI) by proximity with an s-wave superconductor (S) in presence of a magnetic moment of a nearby ferromagnetic insulator (FI). In the previous studies, similar problem was treated with a simplified Hamiltonian, describing an isotropic Dirac cone dispersion. This approximation is only valid near the Dirac point. However, in topological insulators, the chemical potential often lies well above this point, where the Dirac cone is strongly anisotropic and its constant energy contour has a snowflake shape. Taking into account this shape, we show that a very exotic pair potential is induced on the topological insulator surface. Based on the symmetry arguments we also discuss the possibility of a supercurrent flowing along the S/FI interface, when an S/FI hybrid structure is formed on the TI surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    G. Tkachov and E. M. Hankiewicz, Phys. Status Solidi 250, 215 (2013).CrossRefGoogle Scholar
  4. 4.
    X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Science 323, 1184 (2009).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. W. J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    T. D. Stanescu, J. D. Sau, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 81, 241310(R) (2010).Google Scholar
  7. 7.
    A. M. Black-Schaffer, Phys. Rev. B 83, 060504(R) (2011).ADSCrossRefGoogle Scholar
  8. 8.
    A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).Google Scholar
  9. 9.
    Y. Asano and Y. Tanaka, Phys. Rev. B 87, 104513 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    M. Snelder, A. A. Golubov, Y. Asano, and A. Brinkman, J. Phys.: Condens. Matter 27, 315701 (2015); M. Veldhorst, M. Hoek, M. Snelder, H. Hilgenkamp, A. A. Golubov, and A. Brinkman, Phys. Rev. B 90, 035428 (2014); M. Snelder, C. G. Molenaar, Y. Pan, D. Wu, Y. K. Huang, A. de Visser, A. A. Golubov, W. G. van der Wiel, H. Hilgenkamp, M. S. Golden, and A. Brinkman, Supercond. Sci. Technol. 27, 104001 (2014).ADSGoogle Scholar
  11. 11.
    P. Burset, B. Lu, G. Tkachov, Y. Tanaka, E. M. Hankiewicz, and B. Trauzettel, Phys. Rev. B 92, 205424 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    V. L. Berezinskii, JETP Lett. 20, 287 (1974).ADSGoogle Scholar
  14. 14.
    A. Balatsky and E. Abrahams, Phys. Rev. B 45, 13125 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    M. Vojta and E. Dagotto, Phys. Rev. B 59, R713 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Fuseya, H. Kohno, and K. Miyake, J. Phys. Soc. Jpn. 72, 2914 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Tanaka and A. A. Golubov, Phys. Rev. Lett. 98, 037003 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Tanaka, Y. Tanuma, and A. A. Golubov, Phys. Rev. B 76, 054522 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    J. Linder, T. Yokoyama, Y. Tanaka, Y. Asano, and A. Sudbo, Phys. Rev. B 77, 174505 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    I. V. Bobkova, A. M. Bobkov, A. A. Zyuzin, and M. Alidoust, Phys. Rev. B 94, 134506 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K.Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura, E. E. Krasovskii, E. V. Chulkov, H. Iwasawa, T. Okuda, K. Shimada, Y. Ueda, H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 105, 076802 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    M. Nomura, S. Souma, A. Takayama, T. Sato, T. Takahashi, K. Eto, K. Segawa, and Y. Ando, Phys. Rev. B 89, 045134 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al., Nature Commun. 3, 635 (2012).CrossRefGoogle Scholar
  27. 27.
    L. Fu, Phys. Rev. Lett. 103, 266801 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, and N. Nagaosa, Phys. Rev. B 81, 184525 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    K. N. Nesterov, M. Houzet, and J. S. Meyer, Phys. Rev. B 93, 174502 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    I. V. Tokatly, private communication.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. S. Vasenko
    • 1
  • A. A. Golubov
    • 2
    • 3
  • V. M. Silkin
    • 4
    • 5
  • E. V. Chulkov
    • 4
    • 6
  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Faculty of Science and Technology and MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  4. 4.Departamento de Física de Materiales, Facultad de Ciencias QuímicasUPV/EHUSan Sebastián, Basque CountrySpain
  5. 5.IKERBASQUEBasque Foundation for ScienceBilbaoSpain
  6. 6.Tomsk State UniversityTomskRussia

Personalised recommendations