JETP Letters

, Volume 105, Issue 8, pp 488–491 | Cite as

Search for acoustic and optic vibrational modes in Zr40Be60 metallic glass

  • G. Syrykh
  • A. Orecchini
  • A. de Francesco
  • A. Laloni
  • A. Stoliarov
Condensed Matter
  • 32 Downloads

Abstract

Dispersion of collective modes in metallic glass (Zr40Be60, composed of disparate mass particles) was measured at small-angle spectrometer BRISP at the ILL what enabled us to extend to lower momentum transfers unlike to high-angle spectrometer IN4 at the ILL. It was shown that the behavior of the optical mode in the metallic glass is similar to the behavior of optic modes in the other systems with non-sized atoms (liquid LiPb, inert gas mixtures with high density (He65Ne35)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-B. Suck, H. Rudin, H.-J. Güntherodt, and H. Beck, Phys. Rev. Lett. 50, 49 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    M. Calvo, U. Dahlborg, C. Svensson-Huldt, M. Arai, A. D. Taylor, W. S. Howells, and R. G. Delaplane, J. Non-Cryst. Solids 156–158, 53 (1993).CrossRefGoogle Scholar
  3. 3.
    T. Otomo, M. Arai, Y. Inamura, J.-B. Suck, S. M. Bennington, and K. Suzuki, J. Non-Cryst. Solids 232–234, 613 (1998).CrossRefGoogle Scholar
  4. 4.
    T. Scopigno, A. Gessini, F. Bencivenga, and R. Verbeni, Phys. Rev. Lett. 96, 135501 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    J. Hafner, J. Phys. C. 16, 5773 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    T. Otomo, M. Arai, J.-B. Suck, and S. M. Bennington, J. Non-Cryst. Solids 312–314, 599 (2002).CrossRefGoogle Scholar
  7. 7.
    G. F. Syrykh, A. S. Ivanov, N. A. Klimenko, Yu. V. Lisichkin, H. Mutka, and J. A. Stride, J. Phys.: Condens. Matter 20, 104241 (2008).ADSGoogle Scholar
  8. 8.
    W. Montfrooij, P. Westerhuijs, V. O. de Haan, and I. M. de Schepper, Phys. Rev. Lett. 63, 544 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    J. Bosse, G. Jacucci, M. Ronchetti, and W. Schirmacher, Phys. Rev. Lett. 57, 3277 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    F. Sciortino and S. Sastry, J. Chem. Phys. 100, 3881 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    R. P. C. Schram, G. H. Wegdam, and A. Bot, Phys. Rev. A 44, 8062 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    M. Alvarez, F. J. Bermejo, P. Verkerk, and B. Roessli, Phys. Rev. Lett. 80, 2141 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    E. Enciso, N. G. Almarza, P. Domínguez, M. A. González, and F. J. Bermejo, Phys. Rev. Lett. 74, 4233 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    T. Bryk and I. Mryglod, J. Phys.: Condens. Matter 14, L445 (2002).ADSGoogle Scholar
  15. 15.
    R. Fernandez-Perea, F. J. Bermejo, J. L. Martínez, E. Enciso, and P. Verkerk, Phys. Rev. E 59, 3212 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    A. Campa and E. G. D. Cohen, Phys. Rev. A 41, 5451 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    D. Aisa, S. Aisa, E. Babucci, et al., J. Non-Cryst. Solids 352, 5130 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • G. Syrykh
    • 1
  • A. Orecchini
    • 2
    • 3
  • A. de Francesco
    • 3
  • A. Laloni
    • 3
  • A. Stoliarov
    • 4
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Department Physics and GeologyUniversity of PerugiaPerugiaItaly
  3. 3.ICNR-IOM c/o OGG Institut Laue–LangevinGrenobleFrance
  4. 4.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia

Personalised recommendations