JETP Letters

, Volume 105, Issue 7, pp 447–452 | Cite as

Type-III and IV interacting Weyl points

Condensed Matter

Abstract

3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green’s functions parametrized by a 16-element matrix eαμ in an expansion around the Weyl point. The matrix eαμ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g00 and g00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g00 > 0 and, respectively, g00 > 0 or g00 < 0, we find additional “type-III” and “type-IV” Weyl fermions with instabilities (complex frequencies) for g00 < 0 and g00 > 0 or g00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weyl, I. Z. Phys. 56, 330 (1929).ADSCrossRefGoogle Scholar
  2. 2.
    H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981), Nucl. Phys. B 193, 173 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    C. D. Froggatt and H. B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991).CrossRefGoogle Scholar
  4. 4.
    P. G. Grinevich and G. E. Volovik, J. Low Temp. Phys. 72, 371 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    P. Horava, Phys. Rev. Lett. 95, 016405 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    C. Herring, Phys. Rev. 52, 365 (1937).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).ADSGoogle Scholar
  8. 8.
    A. A. Abrikosov, J. Low Temp. Phys. 5, 141 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    H. Weng, Ch. Fang, Zh. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).Google Scholar
  12. 12.
    Sh.-M. Huang, S.-Y. Xu, I. Belopolski, Ch.-Ch. Lee, G. Chang, B. K. Wang, N. Alidoust, G. Bian, M. Neupane, Ch. Zhang, Sh. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).CrossRefGoogle Scholar
  13. 13.
    B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).Google Scholar
  14. 14.
    S.-Y. Xu, I. Belopolski, N. Alidoust, et al. (Collab.), Science 349, 613 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    L. Lu, Zh. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljacic, Science 349, 622 (2015).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    G. Chang, S.-Y. Xu, D. S. Sanchez, Sh.-M. Huang, Ch.-Ch. Lee, T.-R. Chang, G. Bian, H. Zheng, I. Belopolski, N. Alidoust, H.-T. Jeng, A. Bansil, H. Lin, and M. Z. Hasan, Sci. Adv. 2016, e1600295 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Sun, Sh.-Ch. Wu, M. N. Ali, C. Felser, and B. Yan, Phys. Rev. B 92, 161107(R) (2015).Google Scholar
  18. 18.
    N. Xu, H. M. Weng, B. Q. Lv, et al. (Collab.), Nat. Commun. 7, 11006 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    K. Koepernik, D. Kasinathan, D. V. Efremov, S. Khim, S. Borisenko, B. Büchner, and J. van den Brink, Phys. Rev. B 93, 201101(R) (2016)Google Scholar
  20. 19a.
    S. Khim, K. Koepernik, D. V. Efremov, J. Klotz, T. Förster, J. Wosnitza, M. I. Sturza, S. Wurmehl, Ch. Hess, J. van den Brink, and B. Büchner, Phys. Rev. B 94, 165145 (2016).ADSCrossRefGoogle Scholar
  21. 20.
    S.-Y. Xu, N. Alidoust, G. Chang, et al. (Collab.), arXiv:1603.07318 [cond-mat.mes-hall] (2016).Google Scholar
  22. 21.
    Zh. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, Phys. Rev. Lett. 117, 056805 (2016).ADSCrossRefGoogle Scholar
  23. 22.
    A. Tamai, Q. S. Wu, I. Cucchi, F. Y. Bruno, S. Riccò, T. K. Kim, M. Hoesch, C. Barreteau, E. Giannini, C. Besnard, A. A. Soluyanov, and F. Baumberger, Phys. Rev. X 6, 031021 (2016).Google Scholar
  24. 23.
    J. Jiang, Z. K. Liu, Y. Sun, et al. (Collab.), Nat. Commun. 8, 13973 (2017).ADSCrossRefGoogle Scholar
  25. 24.
    H. Huang, Sh. Zhou, and W. Duan, Phys. Rev. B 94, 121117(R) (2016).Google Scholar
  26. 25.
    C. Le, Sh. Qin, X. Wu, X. Dai, P. Fu, and J. Hu, arXiv:1606.05042 (2016).Google Scholar
  27. 26.
    T.-R. Chang, S.-Y. Xu, D. S. Sanchez, et al. (Collab.), arXiv:1606.07555 (2016).Google Scholar
  28. 27.
    T. D. C. Bevan, A. J. Manninen, J. B. Cook, J. R. Hook, H. E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).ADSCrossRefGoogle Scholar
  29. 28.
    G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).MATHGoogle Scholar
  30. 29.
    J. von Neumann and E. Wigner, Phys. Z. 30, 467 (1929).Google Scholar
  31. 30.
    S. P. Novikov, Sov. Math. Dokl. 23, 298 (1981).Google Scholar
  32. 31.
    G. E. Volovik and M. A. Zubkov, Nucl. Phys. B 881, 514 (2014)ADSCrossRefGoogle Scholar
  33. 31a.
    Y. Xu, F. Zhang, and C. Zhang, Phys. Rev. Lett. 115, 265304 (2015).ADSCrossRefGoogle Scholar
  34. 32.
    A. A. Soluyanov, D. Gresch, Zh. Wang, Q. Wu, M. Troyer, Xi Dai, and B. A. Bernevig, Nature 527, 495 (2015).ADSCrossRefGoogle Scholar
  35. 33.
    P. Huhtala and G. E. Volovik, J. Exp. Theor. Phys. 94, 853 (2002); gr-qc/0111055.ADSMathSciNetCrossRefGoogle Scholar
  36. 34.
    G. E. Volovik, JETP Lett. 104, 645 (2016); arXiv:1610.00521; K. Zhang and G. E. Volovik, arXiv:1604. 00849 (2016).ADSCrossRefGoogle Scholar
  37. 35.
    R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An Introduction to Current Research, Ed. by L. Witten (Wiley, New York, London, 1962), p. 227, Gen. Relat. Gravit. 40, 1997 (2008).Google Scholar
  38. 36.
    V. P. Frolov and K. A. Stevens, Phys. Rev. D 70, 044035 (2004).ADSMathSciNetCrossRefGoogle Scholar
  39. 37.
    D. Diakonov, arXiv:1109.0091 (2011).Google Scholar
  40. 38.
    A. A. Vladimirov and D. Diakonov, Phys. Rev. D 86, 104019 (2012).ADSCrossRefGoogle Scholar
  41. 39.
    W. B. Bonnor and B. R. Steadman, Gen. Relat. Gravit. 37, 1833 (2005).ADSCrossRefGoogle Scholar
  42. 40.
    E. Kajari, R. Walser, W. P. Schleich, and A. Delgado, Gen. Relat. Gravit. 36, 2289 (2004).ADSCrossRefGoogle Scholar
  43. 41.
    G. E. Volovik, JETP Lett. 90, 587 (2009); arXiv:0909.3084.ADSCrossRefGoogle Scholar
  44. 42.
    G. E. Volovik, JETP Lett. 91, 55 (2010); arXiv:0912.0502.ADSCrossRefGoogle Scholar
  45. 43.
    J. I. Väyrynen and G. E. Volovik, JETP Lett. 93, 344 (2011); arXiv:1101.1179.ADSCrossRefGoogle Scholar
  46. 44.
    Z. Wang and B. Yan, J. Phys.: Condens. Matter 25, 155601 (2013).ADSGoogle Scholar
  47. 45.
    W. Witczak-Krempa, M. Knap, and D. Abanin, Phys. Rev. Lett. 113, 136402 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations