JETP Letters

, Volume 105, Issue 6, pp 370–374 | Cite as

On the origin of the shallow and “replica” bands in FeSe monolayer superconductors

Condensed Matter

Abstract

We compare the electronic structures of single FeSe layer films on SrTiO3 substrate (FeSe/STO) and KxFe2-ySe2 superconductors obtained from extensive LDA and LDA + DMFT calculations with the results of ARPES experiments. It is demonstrated that correlation effects on Fe-3d states are sufficient in principle to explain the formation of the shallow electron-like bands at the M(X)-point. However, in FeSe/STO these effects alone are apparently insufficient for the simultaneous elimination of the hole-like Fermi surface around the Γ-point which is not observed in ARPES experiments. Detailed comparison of ARPES detected and calculated quasiparticle bands shows reasonable agreement between theory and experiment. Analysis of the bands with respect to their origin and orbital composition shows, that for FeSe/STO system the experimentally observed “replica” quasiparticle band at the M-point (usually attributed to forward scattering interactions with optical phonons in SrTiO3 substrate) can be reasonably understood just as the LDA calculated Fe-3dxy band, renormalized by electronic correlations. The only manifestation of the substrate reduces to lifting the degeneracy between Fe-3dxz and Fe-3dyz bands near M-point. For the case of KxFe2-ySe2 most bands observed in ARPES can also be understood as correlation renormalized Fe-3d LDA calculated bands, with overall semi-quantitative agreement with LDA + DMFT calculations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2017_1396_MOESM1_ESM.pdf (4.7 mb)
On the origin of the shallow and “replica” bands in FeSe monolayer superconductors

References

  1. 1.
    M. V. Sadovskii, Phys. Usp. 51, 1201 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    D. C. Johnson, Adv. Phys. 59, 83 (2010).Google Scholar
  4. 4.
    P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Kordyuk, Low Temp. Phys. 38, 888 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Mizugushi and Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A. Krzton-Maziopa, V. Svitlyk, E, Pomjakushina, R. Puzniak, and K. Conder, J. Phys.: Condens. Matter 28, 293002 (2016).Google Scholar
  9. 9.
    M. V. Sadovskii, Phys. Usp. 59, 947 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Nekrasov and M. V. Sadovskii, JETP Lett. 99, 598 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    Q.-Y. Wang, Z. Li, W.-H. Zhang, et al., Chin. Phys. Lett. 29, 037402 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    R. Peng, H. C. Xu, S. Y. Tan, H. Y. Cao, M. Xia, X. P. Shen, Z. C. Huang, C. H. P. Wen, Q. Song, T. Zhang, B. P. Xie, X. G. Gong, and D. L. Feng, Nat. Commun. 5, 5044 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, and J.-F. Jia, Nat. Mater. 14, 285 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, J. Phys.: Condens. Matter 27, 183201 (2015).ADSGoogle Scholar
  16. 16.
    J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature 515, 245 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    M. Sunagawa, K. Terashima, T. Hamada, et al., J. Phys. Soc. Jpn. 85, 073704 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    L. P. Gor’kov, Phys. Rev. B 93, 060507 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    L. P. Gor’kov, Phys. Rev. B 93, 054517 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J. Phys. 18, 022001 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Wang, K. Nakatsukasa, L. Rademaker, T. Berlijn, and S. Johnston, Supercond. Sci. Technol. 29, 054009 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    I. A. Nekrasov, N. S. Pavlov, M. V. Sadovskii, and A. A. Slobodchikov, Low Temp. Phys. 42, 891 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies, A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S. Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T. Wolf, and A. I. Coldea, Phys. Rev. B 91, 155106 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Supercond. Nov. Magn. 29, 1117 (2016)CrossRefGoogle Scholar
  25. 24a.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 102, 26 (2015).ADSCrossRefGoogle Scholar
  26. 25.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 95, 581 (2012).ADSCrossRefGoogle Scholar
  27. 26.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 116, 620 (2013).ADSCrossRefGoogle Scholar
  28. 27.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 97, 18 (2013).ADSCrossRefGoogle Scholar
  29. 28.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 117, 926 (2013).ADSCrossRefGoogle Scholar
  30. 29.
    Y. Shi, Z.-Q. Han, X.-L. Peng, P. Richard, T. Qian, X.-X. Wu, M.-W. Qiu, S. C. Wang, J. P. Hu, Y.-J. Sun, and H. Ding, arXiv:1606.01470.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • I. A. Nekrasov
    • 1
  • N. S. Pavlov
    • 1
  • M. V. Sadovskii
    • 1
    • 2
  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations