Skip to main content

Magnetic properties of Li2RuO3 as studied by NMR and LDA + DMFT calculations

Abstract

We present results of the combined study of the magnetic properties of Li2RuO3 by means of nuclear magnetic resonance (NMR) spectroscopy and theoretical dynamical mean-field theory (LDA + DMFT) calculations. The NMR data clearly show the onset of a thermal activation process in the high temperature region, T > 560K, which is tentatively ascribed to the formation of the valence bond liquid. The LDA + DMFT calculations demonstrate that the magnetic response at these temperatures is mostly due to the xz/yz orbitals, while the xy orbitals of Ru still form molecular orbitals. Thus, Ru ions are in the orbital-selective state in the high temperature phase of Li2RuO3.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. I. Hiley, M. R. Lees, J. M. Fisher, D. Thompsett, S. Agrestini, R. I. Smith, and R. I. Walton, An. Chem. Int. Ed. 53, 4423 (2014).

    Article  Google Scholar 

  2. 2.

    T. T. Tran, M. Gooch, B. Lorenz, A. P. Litvinchuk, M. G. Sorolla II, J. Brgoch, P. C. W. Chu, and A. M. Guloy, J. Am. Chem. Soc. 137, 636 (2015).

  3. 3.

    D. J. Singh, Phys. Rev. B 91, 214420 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    S. V. Streltsov, I. I. Mazin, and K. Foyevtsova, Phys. Rev. B 92, 134408 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall, and Y.-J. Kim, Phys. Rev. B 91, 144420 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Y. Miura, Y. Yasui, M. Sato, N. Igawa, and K. Kakurai, J. Phys. Soc. Jpn. 76, 033705 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    J. Park, T.-Y. Tan, D. T. Adroja, et al., Sci. Rep. 6, 25238 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    S. A. J. Kimber, I. I. Mazin, J. Shen, H. O. Jeschke, S. V. Streltsov, D. N. Argyriou, R. Valenti, and D. I. Khomskii, Phys. Rev. B 89, 081408 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 89, 161112 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    S. V. Streltsov and D. I. Khomskii, Proc. Natl. Acad. Sci. 113, 10491 (2016).

    Article  Google Scholar 

  11. 11.

    Ya. V. Baklanova, I. Yu. Arapova, A. L. Buzlukov, A. P. Gerashenko, S. V. Verkhovskii, K. N. Mikhalev, T. A. Denisova, I. R. Shein, and L. G. Maksimov, J. Solid State Chem. 208, 43 (2013).

  12. 12.

    A. L. Buzlukovz, I. Yu. Arapov, Y. V. Baklanova, N. I.Medvedeva, T. A. Denisova, and S. V. Verkhovskii, J. Phys. Chem. 120, 23911 (2016).

    Google Scholar 

  13. 13.

    C. Slichter, Principles of Magnetic Resonance (Springer, Berlin, Heidelberg, 2013).

    Google Scholar 

  14. 14.

    D. Massiot, F. Fayon, M. Capron, S. King, I. Le Calve, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, Magn. Reson. Chem. 40, 70 (2002).

    Article  Google Scholar 

  15. 15.

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Article  Google Scholar 

  16. 16.

    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k (Tech. Univ. Wien, Wien, 2001).

    Google Scholar 

  17. 17.

    M. P. Jimenez-Segura, A. Ikeda, S. Yonezawa, and Y. Maeno, Phys. Rev. B 93, 175133 (2016).

    Article  Google Scholar 

  18. 18.

    M. P. Jimenez-Segura, A. Ikeda, S. A. J. Kimber, C. Giacobbe, S. Yonezawa, and Y. Maeno, Phys. Rev. B 94, 115163 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    H. Iwase, M. Isobe, Y. Ueda, and H. Yasuoka, J. Phys. Soc. Jpn. 65, 2397 (1996).

    ADS  Article  Google Scholar 

  20. 20.

    S. Taniguchi, T. Nishikawa, Y. Yasui, Y. Kobayashi, M. Sato, T. Nishioka, M. Kontani, and K. Sano, J. Phys. Soc. Jpn. 64, 2758 (1995).

    ADS  Article  Google Scholar 

  21. 21.

    N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

    ADS  Article  Google Scholar 

  22. 22.

    Y. V. Baklanova, I. Y. Arapova, I. Shein, L. Maksimova, K. Mikhalev, and T. Denisova, J. Struct. Chem. 54, 111 (2013).

    Article  Google Scholar 

  23. 23.

    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).

    ADS  Article  Google Scholar 

  24. 24.

    S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelkina, D. I. Khomskii, and V. I. Anisimov, Phys. Rev. B 71, 245114 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    ADS  Article  Google Scholar 

  26. 26.

    S. Lee, J.-G. Park, D. Adroja, D. Khomskii, S. Streltsov, K. A. McEwen, H. Sakai, K. Yoshimura, V. I. Anisimov, and D. Mori, Nat. Mater. 5, 471 (2006).

    ADS  Article  Google Scholar 

  27. 27.

    S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 86, 064429 (2012).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Streltsov.

Additional information

The article is published in the original. Supplementary materials are available for this article at DOI: 10.1134/S0021364017060017 and are accessible for authorized users.

Supplementary material to the article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arapova, I.Y., Buzlukov, A.L., Germov, A.Y. et al. Magnetic properties of Li2RuO3 as studied by NMR and LDA + DMFT calculations. Jetp Lett. 105, 375–379 (2017). https://doi.org/10.1134/S0021364017060017

Download citation