JETP Letters

, Volume 105, Issue 6, pp 375–379 | Cite as

Magnetic properties of Li2RuO3 as studied by NMR and LDA + DMFT calculations

  • I. Yu. Arapova
  • A. L. Buzlukov
  • A. Yu. Germov
  • K. N. Mikhalev
  • T.-Y. Tan
  • J.-G. Park
  • S. V. Streltsov
Condensed Matter


We present results of the combined study of the magnetic properties of Li2RuO3 by means of nuclear magnetic resonance (NMR) spectroscopy and theoretical dynamical mean-field theory (LDA + DMFT) calculations. The NMR data clearly show the onset of a thermal activation process in the high temperature region, T > 560K, which is tentatively ascribed to the formation of the valence bond liquid. The LDA + DMFT calculations demonstrate that the magnetic response at these temperatures is mostly due to the xz/yz orbitals, while the xy orbitals of Ru still form molecular orbitals. Thus, Ru ions are in the orbital-selective state in the high temperature phase of Li2RuO3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2017_1395_MOESM1_ESM.pdf (455 kb)
Magnetic properties of Li2RuO3 as studied by NMR and LDA + DMFT calculations


  1. 1.
    C. I. Hiley, M. R. Lees, J. M. Fisher, D. Thompsett, S. Agrestini, R. I. Smith, and R. I. Walton, An. Chem. Int. Ed. 53, 4423 (2014).CrossRefGoogle Scholar
  2. 2.
    T. T. Tran, M. Gooch, B. Lorenz, A. P. Litvinchuk, M. G. Sorolla II, J. Brgoch, P. C. W. Chu, and A. M. Guloy, J. Am. Chem. Soc. 137, 636 (2015).Google Scholar
  3. 3.
    D. J. Singh, Phys. Rev. B 91, 214420 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    S. V. Streltsov, I. I. Mazin, and K. Foyevtsova, Phys. Rev. B 92, 134408 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall, and Y.-J. Kim, Phys. Rev. B 91, 144420 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Miura, Y. Yasui, M. Sato, N. Igawa, and K. Kakurai, J. Phys. Soc. Jpn. 76, 033705 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    J. Park, T.-Y. Tan, D. T. Adroja, et al., Sci. Rep. 6, 25238 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. J. Kimber, I. I. Mazin, J. Shen, H. O. Jeschke, S. V. Streltsov, D. N. Argyriou, R. Valenti, and D. I. Khomskii, Phys. Rev. B 89, 081408 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 89, 161112 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    S. V. Streltsov and D. I. Khomskii, Proc. Natl. Acad. Sci. 113, 10491 (2016).CrossRefGoogle Scholar
  11. 11.
    Ya. V. Baklanova, I. Yu. Arapova, A. L. Buzlukov, A. P. Gerashenko, S. V. Verkhovskii, K. N. Mikhalev, T. A. Denisova, I. R. Shein, and L. G. Maksimov, J. Solid State Chem. 208, 43 (2013).Google Scholar
  12. 12.
    A. L. Buzlukovz, I. Yu. Arapov, Y. V. Baklanova, N. I.Medvedeva, T. A. Denisova, and S. V. Verkhovskii, J. Phys. Chem. 120, 23911 (2016).Google Scholar
  13. 13.
    C. Slichter, Principles of Magnetic Resonance (Springer, Berlin, Heidelberg, 2013).Google Scholar
  14. 14.
    D. Massiot, F. Fayon, M. Capron, S. King, I. Le Calve, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, Magn. Reson. Chem. 40, 70 (2002).CrossRefGoogle Scholar
  15. 15.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k (Tech. Univ. Wien, Wien, 2001).Google Scholar
  17. 17.
    M. P. Jimenez-Segura, A. Ikeda, S. Yonezawa, and Y. Maeno, Phys. Rev. B 93, 175133 (2016).CrossRefGoogle Scholar
  18. 18.
    M. P. Jimenez-Segura, A. Ikeda, S. A. J. Kimber, C. Giacobbe, S. Yonezawa, and Y. Maeno, Phys. Rev. B 94, 115163 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    H. Iwase, M. Isobe, Y. Ueda, and H. Yasuoka, J. Phys. Soc. Jpn. 65, 2397 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    S. Taniguchi, T. Nishikawa, Y. Yasui, Y. Kobayashi, M. Sato, T. Nishioka, M. Kontani, and K. Sano, J. Phys. Soc. Jpn. 64, 2758 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).ADSCrossRefGoogle Scholar
  22. 22.
    Y. V. Baklanova, I. Y. Arapova, I. Shein, L. Maksimova, K. Mikhalev, and T. Denisova, J. Struct. Chem. 54, 111 (2013).CrossRefGoogle Scholar
  23. 23.
    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelkina, D. I. Khomskii, and V. I. Anisimov, Phys. Rev. B 71, 245114 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    S. Lee, J.-G. Park, D. Adroja, D. Khomskii, S. Streltsov, K. A. McEwen, H. Sakai, K. Yoshimura, V. I. Anisimov, and D. Mori, Nat. Mater. 5, 471 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 86, 064429 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • I. Yu. Arapova
    • 1
  • A. L. Buzlukov
    • 1
  • A. Yu. Germov
    • 1
  • K. N. Mikhalev
    • 1
  • T.-Y. Tan
    • 2
    • 3
  • J.-G. Park
    • 2
    • 3
  • S. V. Streltsov
    • 1
    • 4
  1. 1.Mikheev Institute of Metal PhysicsYekaterinburgRussia
  2. 2.Center for Correlated Electron SystemsInstitute for Basic Science (IBS)SeoulRepublic of Korea
  3. 3.Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
  4. 4.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations