Skip to main content
Log in

Drift of particles caused by fluctuations of their sizes

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Externally stimulated fluctuations of the size of a particle in an asymmetric environment result in its directional motion. This is demonstrated by considering the particle drift in a periodic symmetric channel, which arises due to fluctuations of the particle size. The emergence of the drift is caused by the time variation of the particle entropy, whereas fluctuations of the diffusion coefficient accompanying fluctuations of the size enhance the drift. The effect of the geometry of the channel and the amplitude and frequency of fluctuations on the drift velocity is studied by the Brownian dynamics method. A coarse-grained analytical description of the process is proposed whose predictions are in satisfactory agreement with the results of simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Belinicher and B. I. Sturman, Sov. Phys. Usp. 23, 199 (1980).

    Article  ADS  Google Scholar 

  2. P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85, 135 (2013)

    Article  ADS  Google Scholar 

  3. A. B. Kolomeisky, Motor Proteins and Molecular Motors (CRS, Boca Raton, FL, 2015).

    Google Scholar 

  4. W. R. Browne and B. L. Feringa, Nat. Nanotechnol. 1, 25 (2006)

    Article  ADS  Google Scholar 

  5. C. Cheng and J. F. Stoddart, Chem. Phys. Chem. 17, 1780 (2016).

    Article  Google Scholar 

  6. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures in Physics (Addison-Wesley, Reading, MA, 1963), Vol. 1, Chap.46.

  7. R. Bartussek and P. Hänggi, Phys. Blätter 51, 506 (1995).

    Article  Google Scholar 

  8. P. Reimann, Phys. Rep. 361, 57 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Hänggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  10. D. Chowdhury, Phys. Rep. 529, 1 (2013).

    Article  ADS  Google Scholar 

  11. R. D. Astumian and M. Bier, Phys. Rev. Lett. 72, 1766 (1994).

    Article  ADS  Google Scholar 

  12. M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).

    Article  ADS  Google Scholar 

  13. I. Derényi and R. D. Astumian, Phys. Rev. E 58, 7781 (1998).

    Article  ADS  Google Scholar 

  14. R. Zwangig, J. Phys. Chem. 96, 3926 (1992).

    Article  Google Scholar 

  15. P. Malgaretti, I. Pagonabarraga, and J. M. Rubi, Front. Phys. 1, 21 (2013)

    Article  Google Scholar 

  16. Q. Chen, B.-Q. Ai, and J.-W. Xiong, Chaos 24, 033119 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  17. B.-Q. Ai and L.-G. Liu, Phys. Rev. E 74, 051114 (2006)

    Article  ADS  Google Scholar 

  18. G. Schmid, P. S. Burada, P. Talkner, and P. Hänggi, Adv. Solid State Phys. 48, 317 (2009)

    Article  Google Scholar 

  19. R. Wang, J.-N. Zhou, X.-M. Liu, and H. Xiao, Int. J. Mod. Phys. B 29, 1550026 (2015).

    Article  ADS  Google Scholar 

  20. V. Yu. Zitserman, A. M. Berezhkovskii, A. E. Antipov, and Yu. A. Makhnovskii, J. Chem. Phys. 135, 121102 (2011)

    Article  ADS  Google Scholar 

  21. L. Dagdug, A. M. Berezhkovskii, Yu. A. Makhnovskii, V. Yu. Zitserman, and S. M. Bezrukov, J. Chem. Phys. 136, 214110 (2012)

    Article  ADS  Google Scholar 

  22. Yu. A. Makhnovskii, V. Yu. Zitserman, and A. E. Antipov, J. Exp. Theor. Phys. 115, 535 (2012)

    Article  ADS  Google Scholar 

  23. A. E. Antipov, V. Yu. Zitserman, and Yu. A. Makhnovskii, Tech. Phys. 58, 1563 (2013).

    Article  Google Scholar 

  24. D. Reguera, A. Luque, P. S. Burada, G. Schmid, J. M. Rubi, and P. Hänggi, Phys. Rev. Lett. 108, 020604 (2012).

    Article  ADS  Google Scholar 

  25. B.-Q. Ai and L.-G. Liu, Chem. Phys. 344, 185 (2008)

    Article  ADS  Google Scholar 

  26. B.-Q. Ai, J. Chem. Phys. 131, 054111 (2009)

    Article  ADS  Google Scholar 

  27. H. Ding, H. Jiang, and Z. Hou, J. Chem. Phys. 143, 244119 (2015).

    Article  ADS  Google Scholar 

  28. D. Shi, M. Matsusaki, T. Kaneko, and M. Akashi, Macromolecules 41, 8167 (2008).

    Article  ADS  Google Scholar 

  29. H.-J. Zhang, Y. Xin, Q. Yan, L.-L. Zhou, L. Peng, and J.-Y. Yuan, Macromol. Rapid Commun. 33, 1952 (2012).

    Article  Google Scholar 

  30. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979).

  31. A. M. Berezhkovskii, Chem. Phys. 370, 253 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Zitserman.

Additional information

Original Russian Text © V.Yu. Zitserman, Yu.A. Makhnovskii, L.I. Trakhtenberg, D.-Y. Yang, S.H. Lin, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 5, pp. 315–321.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitserman, V.Y., Makhnovskii, Y.A., Trakhtenberg, L.I. et al. Drift of particles caused by fluctuations of their sizes. Jetp Lett. 105, 335–340 (2017). https://doi.org/10.1134/S0021364017050149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017050149

Navigation