Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators

Abstract

A new efficient method is proposed for inducing magnetism on the surface of a topological insulator through the deposition of a thin film of an isostructural magnetic insulator whose atomic composition is maximally close to that of the topological material. Such a design prevents the formation of a strong interface potential between subsystems. As a result, the topological state freely penetrates into the magnetic region, where it interacts with the exchange field and gets significantly split at the Dirac point. It is shown that the application of this approach to thin films of a tetradymite-like topological insulator allows realizing the quantum anomalous Hall state with a band gap of several tens of meV.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Article  Google Scholar 

  2. 2.

    B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).

    ADS  Article  Google Scholar 

  3. 3.

    M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  6. 6.

    S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al. (Collab.), Nat. Commun. 3, 635 (2012).

    Article  Google Scholar 

  7. 7.

    I. V. Silkin, T. V. Menshchikova, M. M. Otrokov, S. V. Eremeev, Y. M. Koroteev, M. G. Vergniory, V.M. Kuznetsov, and E. V. Chulkov, JETP Lett. 96, 322 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Europhys. Lett. 114, 37003 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 104, 453 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 085308 (2006).

    ADS  Article  Google Scholar 

  11. 11.

    A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009).

    ADS  Article  Google Scholar 

  12. 12.

    Q. Liu, C.-X. Liu, C. Xu, X. L. Qi, and S. C. Zhang, Phys. Rev. Lett. 102, 156603 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 94, 629 (2011).

    Article  Google Scholar 

  14. 14.

    J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    J. Henk, A. Ernst, S. V. Eremeev, E. V. Chulkov, I. V. Maznichenko, and I. Mertig, Phys. Rev. Lett. 108, 206801 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    A. Polyakov, H. L. Meyerheim, E. D. Crozier, R. A. Gordon, K. Mohseni, S. Roy, A. Ernst, M. G. Vergniory, X. Zubizarreta, M. M. Otrokov, E.V.Chulkov, and J. Kirschner, Phys. Rev. B 92, 045423 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Y. L. Chen, J.-H. Chu, J. G. Analytis, et al. (Collab.), Science 329, 659 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    M. G. Vergniory, M. M. Otrokov, D. Thonig, M. Hoffmann, I. V. Maznichenko, M. Geilhufe, X. Zubizarreta, S. Ostanin, A. Marmodoro, J. Henk, W. Hergert, I. Mertig, E. V. Chulkov, and A. Ernst, Phys. Rev. B 89, 165202 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    I. Lee, C. K. Kim, J. Lee, S. J. L. Billinge, R. Zhong, J. A. Schneeloch, T. Liu, G. Gu, and J. C. S. Davis, Proc. Natl. Acad. Sci. 112, 1316 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    S. V. Eremeev, V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Phys. Rev. B 88, 144430 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    V. N. Men’shov, V. V. Tugushev, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 88, 224401 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    C.-Z. Chang, J. Zhang, X. Feng, et al. (Collab.), Science 340, 167 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nat. Phys. 10, 731 (2014).

    Google Scholar 

  24. 24.

    X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T.-K. Lee, W.-L. Lee, and K. L. Wang, Phys. Rev. Lett. 113, 137201 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 107, 182401 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    W. Luo and X.-L. Qi, Phys. Rev. B 87, 085431 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    T. V. Menshchikova, M. M. Otrokov, S. S. Tsirkin, D. A. Samorokov, V. V. Bebneva, A. Ernst, V. M. Kuznetsov, and E. V. Chulkov, Nano Lett. 13, 6064 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    P. Sessi, M. M. Otrokov, T. Bathon, M. G. Vergniory, S. S. Tsirkin, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, and M. Bode, Phys. Rev. B 88, 161407(R) (2013).

  29. 29.

    S. Roy, H. L. Meyerheim, K. Mohseni, A. Ernst, M. M. Otrokov, M. G. Vergniory, G. Mussler, J. Kampmeier, D. Grützmacher, C. Tusche, J. Schneider, E. V. Chulkov, and J. Kirschner, Phys. Rev. B 90, 155456 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    D. S. Lee, T.-H. Kim, C.-H. Park, C.-Y. Chung, Y. S. Lim, W.-S. Seo, and H.-H. Park, Cryst. Eng. Commun. 15, 5532 (2013).

    Article  Google Scholar 

  31. 31.

    K. Okamoto, K. Kuroda, H. Miyahara, K. Miyamoto, T. Okuda, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, K. Shimada, H. Namatame, M. Taniguchi, D. A. Samorokov, T. V. Menshchikova, and E. V. Chulkov, Phys. Rev. B 86, 195304 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  33. 33.

    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1998).

    ADS  Article  Google Scholar 

  34. 34.

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Article  Google Scholar 

  35. 35.

    D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).

    ADS  Article  Google Scholar 

  36. 36.

    S. Grimme, J. Antony, S. Ehrlich, and N. Krieg, J. Chem. Phys. 132, 154104 (2010).

    ADS  Article  Google Scholar 

  37. 37.

    S. Grimme, S. Ehrlich, and L. Goerigk, J. Comp. Chem. 32, 1456 (2011).

    Article  Google Scholar 

  38. 38.

    V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    ADS  Article  Google Scholar 

  39. 39.

    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

    ADS  Article  Google Scholar 

  40. 40.

    D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    ADS  Article  Google Scholar 

  41. 41.

    Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-s. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204 (2004).

    ADS  Article  Google Scholar 

  42. 42.

    A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).

    ADS  Article  Google Scholar 

  43. 43.

    G. Bihlmayer, Yu. M. Koroteev, T. V. Menshchikova, E. V. Chulkov, and S. Blügel, Topological Insulators: Fundamentals and Perspectives (Wiley-VCH, Weinheim, 2015), Part 2, Chap. 5, p. 124.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. V. Menshchikova.

Additional information

Original Russian Text © M.M. Otrokov, T.V. Menshchikova, I.P. Rusinov, M.G. Vergniory, V.M. Kuznetsov, E.V. Chulkov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 5, pp. 275–281.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otrokov, M.M., Menshchikova, T.V., Rusinov, I.P. et al. Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators. Jetp Lett. 105, 297–302 (2017). https://doi.org/10.1134/S0021364017050113

Download citation