Advertisement

JETP Letters

, Volume 105, Issue 5, pp 297–302 | Cite as

Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators

  • M. M. Otrokov
  • T. V. Menshchikova
  • I. P. Rusinov
  • M. G. Vergniory
  • V. M. Kuznetsov
  • E. V. Chulkov
Condensed Matter

Abstract

A new efficient method is proposed for inducing magnetism on the surface of a topological insulator through the deposition of a thin film of an isostructural magnetic insulator whose atomic composition is maximally close to that of the topological material. Such a design prevents the formation of a strong interface potential between subsystems. As a result, the topological state freely penetrates into the magnetic region, where it interacts with the exchange field and gets significantly split at the Dirac point. It is shown that the application of this approach to thin films of a tetradymite-like topological insulator allows realizing the quantum anomalous Hall state with a band gap of several tens of meV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
  6. 6.
    S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al. (Collab.), Nat. Commun. 3, 635 (2012).CrossRefGoogle Scholar
  7. 7.
    I. V. Silkin, T. V. Menshchikova, M. M. Otrokov, S. V. Eremeev, Y. M. Koroteev, M. G. Vergniory, V.M. Kuznetsov, and E. V. Chulkov, JETP Lett. 96, 322 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Europhys. Lett. 114, 37003 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 104, 453 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 085308 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    Q. Liu, C.-X. Liu, C. Xu, X. L. Qi, and S. C. Zhang, Phys. Rev. Lett. 102, 156603 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 94, 629 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    J. Henk, A. Ernst, S. V. Eremeev, E. V. Chulkov, I. V. Maznichenko, and I. Mertig, Phys. Rev. Lett. 108, 206801 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    A. Polyakov, H. L. Meyerheim, E. D. Crozier, R. A. Gordon, K. Mohseni, S. Roy, A. Ernst, M. G. Vergniory, X. Zubizarreta, M. M. Otrokov, E.V.Chulkov, and J. Kirschner, Phys. Rev. B 92, 045423 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    Y. L. Chen, J.-H. Chu, J. G. Analytis, et al. (Collab.), Science 329, 659 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    M. G. Vergniory, M. M. Otrokov, D. Thonig, M. Hoffmann, I. V. Maznichenko, M. Geilhufe, X. Zubizarreta, S. Ostanin, A. Marmodoro, J. Henk, W. Hergert, I. Mertig, E. V. Chulkov, and A. Ernst, Phys. Rev. B 89, 165202 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    I. Lee, C. K. Kim, J. Lee, S. J. L. Billinge, R. Zhong, J. A. Schneeloch, T. Liu, G. Gu, and J. C. S. Davis, Proc. Natl. Acad. Sci. 112, 1316 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    S. V. Eremeev, V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Phys. Rev. B 88, 144430 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    V. N. Men’shov, V. V. Tugushev, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 88, 224401 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    C.-Z. Chang, J. Zhang, X. Feng, et al. (Collab.), Science 340, 167 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nat. Phys. 10, 731 (2014).Google Scholar
  24. 24.
    X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T.-K. Lee, W.-L. Lee, and K. L. Wang, Phys. Rev. Lett. 113, 137201 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 107, 182401 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    W. Luo and X.-L. Qi, Phys. Rev. B 87, 085431 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    T. V. Menshchikova, M. M. Otrokov, S. S. Tsirkin, D. A. Samorokov, V. V. Bebneva, A. Ernst, V. M. Kuznetsov, and E. V. Chulkov, Nano Lett. 13, 6064 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    P. Sessi, M. M. Otrokov, T. Bathon, M. G. Vergniory, S. S. Tsirkin, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, and M. Bode, Phys. Rev. B 88, 161407(R) (2013).Google Scholar
  29. 29.
    S. Roy, H. L. Meyerheim, K. Mohseni, A. Ernst, M. M. Otrokov, M. G. Vergniory, G. Mussler, J. Kampmeier, D. Grützmacher, C. Tusche, J. Schneider, E. V. Chulkov, and J. Kirschner, Phys. Rev. B 90, 155456 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    D. S. Lee, T.-H. Kim, C.-H. Park, C.-Y. Chung, Y. S. Lim, W.-S. Seo, and H.-H. Park, Cryst. Eng. Commun. 15, 5532 (2013).CrossRefGoogle Scholar
  31. 31.
    K. Okamoto, K. Kuroda, H. Miyahara, K. Miyamoto, T. Okuda, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, K. Shimada, H. Namatame, M. Taniguchi, D. A. Samorokov, T. V. Menshchikova, and E. V. Chulkov, Phys. Rev. B 86, 195304 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  33. 33.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1998).ADSCrossRefGoogle Scholar
  34. 34.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  35. 35.
    D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).ADSCrossRefGoogle Scholar
  36. 36.
    S. Grimme, J. Antony, S. Ehrlich, and N. Krieg, J. Chem. Phys. 132, 154104 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    S. Grimme, S. Ehrlich, and L. Goerigk, J. Comp. Chem. 32, 1456 (2011).CrossRefGoogle Scholar
  38. 38.
    V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).ADSCrossRefGoogle Scholar
  39. 39.
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).ADSCrossRefGoogle Scholar
  40. 40.
    D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).ADSCrossRefGoogle Scholar
  41. 41.
    Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-s. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    G. Bihlmayer, Yu. M. Koroteev, T. V. Menshchikova, E. V. Chulkov, and S. Blügel, Topological Insulators: Fundamentals and Perspectives (Wiley-VCH, Weinheim, 2015), Part 2, Chap. 5, p. 124.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • M. M. Otrokov
    • 1
    • 2
  • T. V. Menshchikova
    • 1
  • I. P. Rusinov
    • 1
    • 2
  • M. G. Vergniory
    • 3
  • V. M. Kuznetsov
    • 1
  • E. V. Chulkov
    • 1
    • 2
    • 4
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Department of Applied Physics II, Faculty of Science and TechnologyUniversity of the Basque Country UPV/EHUBilbaoSpain
  4. 4.Departamento de Física de Materiales UPV/EHUCentro de Física de Materiales CFM–MPC and Centro Mixto CSIC-UPV/EHUSan Sebastián/DonostiaSpain

Personalised recommendations