JETP Letters

, Volume 105, Issue 5, pp 319–326 | Cite as

Magnetic and structural properties of Fe–Co nanowires fabricated by matrix synthesis in the pores of track membranes

  • K. V. Frolov
  • D. L. Zagorskii
  • I. S. Lyubutin
  • M. A. Chuev
  • I. V. Perunov
  • S. A. Bedin
  • A. A. Lomov
  • V. V. Artemov
  • S. N. Sulyanov
Condensed Matter
  • 48 Downloads

Abstract

Fe1-xCox nanowires are obtained by electrochemical deposition into the pores of track-etched membranes. The characteristics of the growth process that allow controlling the length and aspect ratio of the nanowires are established. The elemental composition and magnetic properties of the nanowires depend on the diameter of the track-etched pores, which varies from 30 to 200 nm, and the electrochemical potential U (650–850 mV), which determines the nanowire growth rate. According to the results of elemental analysis and the Mössbauer spectroscopy data, the Co content in Fe1-xCox lies in the range of x=0.20−0.25. It is found that the orientation of the magnetic moment of Fe–Co nanoparticles in the wires depends both on the track pore size d and on the nanowire growth rate. Thus, the magnetic moments in nanowires grown in 50-nm-diameter pores are oriented within 0°–40° with respect to the nanowire axis. The magnetic properties of the nanowires are explained in the framework of a theoretical model describing the magnetic dynamics of nanocomposites, which was extended to include the relaxation of the magnetization vector and to take into account interaction between the particles. The key physical parameters important for the technological applications of the nanowires are determined, their dependence on the nanowire growth conditions is traced, and the possibility of controlling them is established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications, Ed. by M. Vázquez (Woodhead, Elsevier, 2015).Google Scholar
  2. 2.
    C. R. Martin, Science 266, 1961 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    Electrodeposited Nanowires and Their Applications, Ed. by N. Lupu (InTech, Rijeka, Croatia, 2010).Google Scholar
  4. 4.
    M. M. Maqableh, X. Huang, S. Y. Sung, K. Sai Madhukar Reddy, G. Norby, R. H. Victora, and B. J. H. Stad-ler, Nano Lett. 12, 4102 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    C. Zet and C. Fosalau, Dig. J. Nanomater. Bios. 7, 299 (2012).Google Scholar
  6. 6.
    C. A. Ferguson, D. A. MacLaren, and S. McVitie, J. Magn. Magn. Mater. 381, 457 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    M. Pousthomis, E. Anagnostopoulou, I. Panagiotopoulos, R. Boubekri, W. Fang, F. Ott, K. A. Atmane, J.-Y. Piquemal, L.-M. Lacroix, and G. Viau, Nano Res. 8, 2231 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Tanase, E. J. Felton, D. S. Gray, A. Hultgren, C. S. Chen, and D. H. Reich, Lab. Chip. 5, 598 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Schrittwieser, F. Ludwig, J. Dieckhoff, K. Soulantica, G. Viau, L.-M. Lacroix, S. M. Lentijo, R. Boubekri, J. Maynadié, A. Huetten, H. Brueckl, and J. Schotter, ACS Nano 6, 791 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. P. Ivanov, A. Alfadhel, M. Alnassar, J. E. Perez, M. Vazquez, A. Chuvilin, and J. Kosel, Nat. Sci. Rep. 6, 24189 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    M. F. Contreras, R. Sougrat, A. Zaher, T. Ravasi, and J. Kosel, Int._J. Nanomed. 10, 2141 (2015).CrossRefGoogle Scholar
  12. 12.
    W. Hong, S. Lee, H. J. Chang, E. S. Lee, and Y. Cho, Biomaterials 106, 78 (2016).CrossRefGoogle Scholar
  13. 13.
    C. Bran, E. M. Palermo, Z.-A. Li, R. P. del Real, M. Spasova, M. Fare, and M. Vazquez, J. Phys. D: Appl. Phys. 48, 1 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Movsesyan, I. Schubert, L. Yeranyan, C. Trautmann, and M. E. Toimil-Molares, Semicond. Sci. Technol. 31, 1 (2016).CrossRefGoogle Scholar
  15. 15.
    V. V. Korotkov, V. N. Kudryavtsev, D. L. Zagorskii, and S. A. Bedin, Gal’vanotekh. Obrab. Poverkhn. 19 (4), 23 (2011).Google Scholar
  16. 16.
    V. V. Korotkov, V. N. Kudryavtsev, S. S. Kruglikov, D. L. Zagorskii, S. N. Sul’yanov, and S. A. Bedin, Gal’vanotekh. Obrab. Poverkhn. 23 (1), 24 (2015).Google Scholar
  17. 17.
    K. V. Frolov, D. L. Zagorskii, I. S. Lyubutin, V. V. Korotkov, S. A. Bedin, S. N. Sulyanov, V. V. Artemov, and B. V. Mchedlishvili, JETP Lett. 99, 570 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    A. Kozlovskiy, A. Zhanbotin, M. Zdorovets, I. Manakova, A. Ozernoy, T. Kiseleva, K. Kadyrzhanov, V. Rusakov, and E. Kanyukov, Nucl. Instrum. Methods Phys. Res. B 381, 103 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    E. Jartych, J. K. Zurawicz, and M. Budzynski, J. Phys.: Condens. Matter 5, 927 (1993).ADSGoogle Scholar
  20. 20.
    Z. Chen, Q. Zhan, D. Xue, F. Li, X. Zhou, H. Kunkel, and G. Williams, J. Phys.: Condens. Matter 14, 613 (2002).ADSGoogle Scholar
  21. 21.
    W. Lu, P. Huang, C. He, and B. Yan, Int. J. Electrochem. Sci. 7, 12262 (2012).Google Scholar
  22. 22.
    V. V. Ovchinnikov, Mössbauer Analysis of the Atomic and Magnetic Structure of Alloys (Cambridge Int. Science, Cambridge, UK, 2006).Google Scholar
  23. 23.
    M. A. Chuev, Dokl. Phys. 56, 318 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    M. A. Chuev, V. M. Cherepanov, and M. A. Polikarpov, JETP Lett. 92, 21 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    V. S. Shpinel’, Gamma-Ray Resonance in Crystals (Nauka, Moscow, 1969) [in Russian].Google Scholar
  26. 26.
    I. S. Jacobs and C. P. Bean, Phys. Rev. 100, 1060 (1955).ADSCrossRefGoogle Scholar
  27. 27.
    E. C. Stoner and E. P. Wohlfarth, Phil. Trans. R. Soc. London A 240, 599 (1948).ADSCrossRefGoogle Scholar
  28. 28.
    A. M. Afanas’ev, M. A. Chuev, and J. Hesse, J. Exp. Theor. Phys. 89, 533 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    M. A. Chuev and J. Hesse, J. Phys.: Condens. Matter 19, 506201 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • K. V. Frolov
    • 1
  • D. L. Zagorskii
    • 1
    • 6
  • I. S. Lyubutin
    • 1
  • M. A. Chuev
    • 2
  • I. V. Perunov
    • 1
    • 3
  • S. A. Bedin
    • 1
    • 4
  • A. A. Lomov
    • 2
  • V. V. Artemov
    • 1
  • S. N. Sulyanov
    • 1
    • 5
  1. 1.Shubnikov Institute of CrystallographyFederal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of PhysicsMoscow State UniversityMoscowRussia
  4. 4.Moscow State Pedagogical UniversityMoscowRussia
  5. 5.National Research Center Kurchatov InstituteMoscowRussia
  6. 6.Gubkin Russian State University of Oil and GasNational Research UniversityMoscowRussia

Personalised recommendations