Photoinduced gratings in a Sn2P2S6 ferroelectric crystal with the period depending on the optical pump power


The light scattering in the form of ring structures in Sn2P2S6 crystals at the propagation of intense laser pump radiation along the b crystallographic axis is detected. Radiation passing through a crystal is completely scattered into a cone whose angle increases with the pump power and decreases reversibly with a decrease in this power. The observed effect can be attributed to a spontaneous increase in the amplitude of photoinduced bulk diffraction gratings and to the scattering of light on them in the directions where the phase increments of the photorefractive and diffraction natures compensate each other. A similar type of scattering was observed previously in other photorefractive crystals, but the appearance of gratings with the period easily varied by varying the pump power is demonstrated for the first time.

This is a preview of subscription content, log in to check access.


  1. 1.

    W. Phillips, J. J. Amodei, and D. L. Staebler, RCA Rev. 33, 94 (1972).

    Google Scholar 

  2. 2.

    I. F. Kanaev, V. K. Malinovsky, and V. I. Sturman, Opt. Commun. 34, 95 (1980).

    ADS  Article  Google Scholar 

  3. 3.

    V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, Sov. J. Quantum Electron. 10, 1346 (1980).

    ADS  Article  Google Scholar 

  4. 4.

    P. A. Augustov, M. Reinfelde, and K. K. Shvarts, Appl. Phys. A 29, 169 (1982).

    ADS  Article  Google Scholar 

  5. 5.

    E. M. Avakyan, K. T. Belabaev, and S. G. Odulov, Sov. Phys. Solid State 25, 1887 (1983).

    Google Scholar 

  6. 6.

    F. Guibaly and L. Yong, Ferroelectrics 46, 201 (1983).

    Article  Google Scholar 

  7. 7.

    S. Odoulov, K. Belabaev, and I. Kiseleva, Opt. Lett. 10, 31 (1985).

    ADS  Article  Google Scholar 

  8. 8.

    I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odulov, Sov. Phys. Solid State 28, 1673 (1986).

    Google Scholar 

  9. 9.

    D. A. Temple and C. Warde, J. Opt. Soc. Am. B 3, 337 (1986).

    ADS  Article  Google Scholar 

  10. 10.

    J. Pender and L. Hesselink, J. Opt. Soc. Am. B 7, 1361 (1990).

    ADS  Article  Google Scholar 

  11. 11.

    V. V. Obukhovskii and A. V. Stoyanov, Sov. J. Quantum Electron. 15, 367 (1985).

    ADS  Article  Google Scholar 

  12. 12.

    S.-M. Liu, G.-Y. Zhang, J.-L. Wang, X.-Y. Ma, and Y.-F. Fu, Opt. Commun. 70, 185 (1989).

    ADS  Article  Google Scholar 

  13. 13.

    T. Honda, Opt. Lett. 18, 598 (1993).

    ADS  Article  Google Scholar 

  14. 14.

    N. V. Kukhtarev, T. V. Kukhtareva, H. J. Caulfield, P. P. Banerjee, H.-L. Yu, and L. Hesselink, Opt. Eng. 34, 2261 (1995).

    ADS  Article  Google Scholar 

  15. 15.

    T. Honda and H. Matsumoto, Opt. Lett. 20, 1755 (1995).

    ADS  Article  Google Scholar 

  16. 16.

    B. I. Sturman and A. I. Chernykh, J. Exp. Theor. Phys. 84, 881 (1997).

    ADS  Article  Google Scholar 

  17. 17.

    P. M. Lushnikov, J. Exp. Theor. Phys. 86, 614 (1998).

    ADS  Article  Google Scholar 

  18. 18.

    I. F. Kanaev, V. K. Malinovskii, and B. I. Sturman, Sov. Phys. JETP 47, 834 (1978).

    ADS  Google Scholar 

  19. 19.

    S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, J. Opt. Soc. Am. B 13, 2352 (1996).

    ADS  Article  Google Scholar 

  20. 20.

    R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, J. Phys.: Condens. Matter. 18, 5323 (2006).

    ADS  Google Scholar 

  21. 21.

    R. M. Yevych and Yu. M. Vysochanskii, Condens. Matter Phys. 11, 417 (2008).

    Article  Google Scholar 

  22. 22.

    C. D. Carpentier and R. Nitsche, Mater. Res. Bull. 9, 1097 (1974).

    Article  Google Scholar 

  23. 23.

    M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korde, and V. Y. Slivka, Sov. Phys. Solid State 19, 1794 (1977).

    Google Scholar 

  24. 24.

    A. Anema, A. Grabar, and T. Rasing, Ferroelectrics 183, 181 (1996).

    Article  Google Scholar 

  25. 25.

    A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, Opt. Commun. 188, 187 (2001).

    ADS  Article  Google Scholar 

  26. 26.

    D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Gunter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk, Opt. Mater. Express 1, 953 (2011).

    Article  Google Scholar 

  28. 28.

    Yu. Vysochanskii, K. Glukhov, K. Fedyo, and R. Yevych, Ferroelectrics 414, 30 (2011).

    Article  Google Scholar 

  29. 29.

    K. A. Grishunin, K. A. Brekhov, and O. V. Samotokhin, Ross. Tekhnol. Zh. 2 (7), 134 (2015).

    Google Scholar 

  30. 30.

    D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, Opt. Express 13, 2047 (2005).

    ADS  Article  Google Scholar 

  31. 31.

    P. A. Prudkovskii, Quantum Electron. 41, 30 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Y. W. Cho, S. K. Choi, and Yu. M. Vysochanskii, J. Mater. Res. 16, 3317 (2001).

    ADS  Article  Google Scholar 

  33. 33.

    V. V. Obukhovskii and A. V. Stoyanov, Sov. J. Quantum Electron. 15, 367 (1985).

    ADS  Article  Google Scholar 

  34. 34.

    A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Gunter, Springer Ser. Opt. Sci. 114, 640 (2007).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. A. Prudkovskii.

Additional information

Original Russian Text © P.A. Prudkovskii, K.A. Brekhov, K.A. Grishunin, K.A. Kuznetsov, E.D. Mishina, M.S. Fokin, G.Kh. Kitaeva, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 3, pp. 142–147.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prudkovskii, P.A., Brekhov, K.A., Grishunin, K.A. et al. Photoinduced gratings in a Sn2P2S6 ferroelectric crystal with the period depending on the optical pump power. Jetp Lett. 105, 158–163 (2017).

Download citation