JETP Letters

, Volume 105, Issue 3, pp 158–163 | Cite as

Photoinduced gratings in a Sn2P2S6 ferroelectric crystal with the period depending on the optical pump power

  • P. A. PrudkovskiiEmail author
  • K. A. Brekhov
  • K. A. Grishunin
  • K. A. Kuznetsov
  • E. D. Mishina
  • M. S. Fokin
  • G. Kh. Kitaeva
Optics and Laser Physics


The light scattering in the form of ring structures in Sn2P2S6 crystals at the propagation of intense laser pump radiation along the b crystallographic axis is detected. Radiation passing through a crystal is completely scattered into a cone whose angle increases with the pump power and decreases reversibly with a decrease in this power. The observed effect can be attributed to a spontaneous increase in the amplitude of photoinduced bulk diffraction gratings and to the scattering of light on them in the directions where the phase increments of the photorefractive and diffraction natures compensate each other. A similar type of scattering was observed previously in other photorefractive crystals, but the appearance of gratings with the period easily varied by varying the pump power is demonstrated for the first time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Phillips, J. J. Amodei, and D. L. Staebler, RCA Rev. 33, 94 (1972).Google Scholar
  2. 2.
    I. F. Kanaev, V. K. Malinovsky, and V. I. Sturman, Opt. Commun. 34, 95 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, Sov. J. Quantum Electron. 10, 1346 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    P. A. Augustov, M. Reinfelde, and K. K. Shvarts, Appl. Phys. A 29, 169 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    E. M. Avakyan, K. T. Belabaev, and S. G. Odulov, Sov. Phys. Solid State 25, 1887 (1983).Google Scholar
  6. 6.
    F. Guibaly and L. Yong, Ferroelectrics 46, 201 (1983).CrossRefGoogle Scholar
  7. 7.
    S. Odoulov, K. Belabaev, and I. Kiseleva, Opt. Lett. 10, 31 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odulov, Sov. Phys. Solid State 28, 1673 (1986).Google Scholar
  9. 9.
    D. A. Temple and C. Warde, J. Opt. Soc. Am. B 3, 337 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    J. Pender and L. Hesselink, J. Opt. Soc. Am. B 7, 1361 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Obukhovskii and A. V. Stoyanov, Sov. J. Quantum Electron. 15, 367 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    S.-M. Liu, G.-Y. Zhang, J.-L. Wang, X.-Y. Ma, and Y.-F. Fu, Opt. Commun. 70, 185 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    T. Honda, Opt. Lett. 18, 598 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Kukhtarev, T. V. Kukhtareva, H. J. Caulfield, P. P. Banerjee, H.-L. Yu, and L. Hesselink, Opt. Eng. 34, 2261 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    T. Honda and H. Matsumoto, Opt. Lett. 20, 1755 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    B. I. Sturman and A. I. Chernykh, J. Exp. Theor. Phys. 84, 881 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    P. M. Lushnikov, J. Exp. Theor. Phys. 86, 614 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    I. F. Kanaev, V. K. Malinovskii, and B. I. Sturman, Sov. Phys. JETP 47, 834 (1978).ADSGoogle Scholar
  19. 19.
    S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, J. Opt. Soc. Am. B 13, 2352 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, J. Phys.: Condens. Matter. 18, 5323 (2006).ADSGoogle Scholar
  21. 21.
    R. M. Yevych and Yu. M. Vysochanskii, Condens. Matter Phys. 11, 417 (2008).CrossRefGoogle Scholar
  22. 22.
    C. D. Carpentier and R. Nitsche, Mater. Res. Bull. 9, 1097 (1974).CrossRefGoogle Scholar
  23. 23.
    M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korde, and V. Y. Slivka, Sov. Phys. Solid State 19, 1794 (1977).Google Scholar
  24. 24.
    A. Anema, A. Grabar, and T. Rasing, Ferroelectrics 183, 181 (1996).CrossRefGoogle Scholar
  25. 25.
    A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, Opt. Commun. 188, 187 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Gunter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk, Opt. Mater. Express 1, 953 (2011).CrossRefGoogle Scholar
  28. 28.
    Yu. Vysochanskii, K. Glukhov, K. Fedyo, and R. Yevych, Ferroelectrics 414, 30 (2011).CrossRefGoogle Scholar
  29. 29.
    K. A. Grishunin, K. A. Brekhov, and O. V. Samotokhin, Ross. Tekhnol. Zh. 2 (7), 134 (2015).Google Scholar
  30. 30.
    D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, Opt. Express 13, 2047 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    P. A. Prudkovskii, Quantum Electron. 41, 30 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    Y. W. Cho, S. K. Choi, and Yu. M. Vysochanskii, J. Mater. Res. 16, 3317 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    V. V. Obukhovskii and A. V. Stoyanov, Sov. J. Quantum Electron. 15, 367 (1985).ADSCrossRefGoogle Scholar
  34. 34.
    A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Gunter, Springer Ser. Opt. Sci. 114, 640 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • P. A. Prudkovskii
    • 1
    Email author
  • K. A. Brekhov
    • 2
  • K. A. Grishunin
    • 2
  • K. A. Kuznetsov
    • 1
  • E. D. Mishina
    • 2
  • M. S. Fokin
    • 1
  • G. Kh. Kitaeva
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Moscow Technological University (MIREA)MoscowRussia

Personalised recommendations