Skip to main content
Log in

On a new mechanism of excitation of the absolute parametric decay instability of an electromagnetic wave in experiments on electron cyclotron resonance heating in toroidal devices

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Experimental conditions under which the low-threshold absolute parametric decay instability of an electromagnetic wave with extraordinary polarization at the electron cyclotron resonance heating of a plasma at the second harmonic resonance in toroidal devices are analyzed. A new mechanism is proposed for the localization of a daughter electrostatic wave in the toroidal direction in the region of a high-power pump beam. This mechanism, along with the two-dimensional localization of the daughter wave because of a nonmonotonic radial profile of the plasma density and the poloidal inhomogeneity of the magnetic field, can be responsible for the parametric excitation of a three-dimensional cavity for this wave and, as a result, low-threshold absolute decay instability of the pump wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Westerhof, S. Nielsen, J. W. Oosterbeek, M. Salewski, M. R. de Baar, W. A. Bongers, A. Burger, B. A. Hennen, S. B. Korsholm, F. Leipold, D. Moseev, M. Stejner, and D. J. Thoen, Phys. Rev. Lett. 103, 125001 (2009).

    Article  ADS  Google Scholar 

  2. S. K. Nielsen, M. Salewski, E. Westerhof, W. Bongers, S. B. Korsholm, F. Leipold, J. W. Oosterbeek, D. Moseev, and M. Stejner, Plasma Phys. Control. Fusion 55, 115003 (2013).

    Article  ADS  Google Scholar 

  3. F. Meo, M. Stejner, M. Salewski, et al., J. Phys.: Conf. Ser. 227, 012010 (2010).

    Google Scholar 

  4. W. A. Bongers, W. Kasparek, N. Doelman, et al., EPJ Web Conf. 32, 03006 (2012).

    Article  Google Scholar 

  5. U. Tartari, G. Grosso, G. Granucci, L. V. Lubyako, A. G. Shalashov, E. V. Suvorov, F. P. Orsitto, A. Simonetto, S. Nowak, F. Volpe, A. Bruschi, F. Gandini, V. Muzzini, S. Garavaglia, and G. Grossetti, Nucl. Fusion 46, 928 (2006).

    Article  ADS  Google Scholar 

  6. U. Tartari, G. Grosso, G. Granucci, F. Gandini, S. Garavaglia, G. Grossetti, A. Simonetto, V. Mellera, V. Muzzini, L. Lubyako, A. Shalashov, F. P. Orsitto, G. Ciccone, and F. Volpe, Rev. Sci. Instrum. 78, 043506 (2007).

    Article  ADS  Google Scholar 

  7. S. Kubo, M. Nishiura, K. Tanaka, et al., Rev. Sci. Instrum. 81, 10D535 (2010).

  8. D. Rapisarda, B. Zurro, V. Tribaldos, and A. Baciero, Plasma Phys. Control. Fusion 49, 309 (2007).

    Article  ADS  Google Scholar 

  9. A. N. Karpushov, B. P. Duval, T. P. Goodman, and C. H. Schlatter, in Proceedings of the 33rd EPS Conference on Plasma Physics, Rome, Italy, June 19–23, 2006, Vol. 301, p. 1152.

    Google Scholar 

  10. M. Porkolab and B. I. Cohen, Nucl. Fusion 28, 239 (1988).

    Article  Google Scholar 

  11. B. I. Cohen, R. H. Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys. 63, 949 (1991).

    Article  ADS  Google Scholar 

  12. A. G. Litvak, A. M. Sergeev, E. V. Suvorov, M. D. Tokman, and I. V. Khazanov, Phys. Fluids B 5, 4347 (1993).

    Article  ADS  Google Scholar 

  13. A. D. Piliya, in Proceedings of the 10th Conference on Phenomena in Ionized Gases, Oxford, 1971, Ed. by R. N. Franklin (Donald Parsons, Oxford, 1971), p.320.

  14. M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).

    Article  ADS  Google Scholar 

  15. A. D. Piliya, Sov. Phys. JETP 37, 629 (1973).

    ADS  Google Scholar 

  16. M. Kantor, A. J. H. Donne, R. Jaspers, and H. J. van der Meiden, Plasma Phys. Control. Fusion 51, 055002 (2009).

    Article  ADS  Google Scholar 

  17. E. Z. Gusakov and V. I. Fedorov, J. Plasma Phys. 5, 463 (1979).

    Google Scholar 

  18. E. Z. Gusakov and A. Yu. Popov, JETP Lett. 91, 655 (2010).

    Article  ADS  Google Scholar 

  19. E. Z. Gusakov and A. Yu. Popov, Phys. Rev. Lett. 105, 115003 (2010).

    Article  ADS  Google Scholar 

  20. E. Z. Gusakov and A. Yu. Popov, Nuclear Fusion 51, 073028 (2011).

    Article  ADS  Google Scholar 

  21. A. Yu. Popov, E. Z. Gusakov, and A. N. Saveliev, J. Exp. Theor. Phys. 69, 164 (2012).

    Article  Google Scholar 

  22. A. Yu. Popov and E. Z. Gusakov, J. Exp. Theor. Phys. 120, 147 (2015).

    Article  ADS  Google Scholar 

  23. E. Z. Gusakov and A. Yu. Popov, JETP Lett. 94, 277 (2011).

    Article  ADS  Google Scholar 

  24. E. Gusakov and A. Popov, Eur. Phys. Lett. 99, 15001 (2012).

    Article  ADS  Google Scholar 

  25. A. I. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics: Linear Theory (Pergamon, Oxford, 1975).

    Google Scholar 

  26. E. Z. Gusakov, A. Yu. Popov, and M. A. Irzak, J. Exp. Theor. Phys. 123, 723 (2016).

    Article  ADS  Google Scholar 

  27. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 23, 082503 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Popov.

Additional information

Original Russian Text © A.Yu. Popov, E.Z. Gusakov, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 2, pp. 64–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, A.Y., Gusakov, E.Z. On a new mechanism of excitation of the absolute parametric decay instability of an electromagnetic wave in experiments on electron cyclotron resonance heating in toroidal devices. Jetp Lett. 105, 78–82 (2017). https://doi.org/10.1134/S0021364017020138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017020138

Navigation