Skip to main content
Log in

AlInAs quantum dots

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A system of quantum dots on the basis of AlxIn1-xAs/AlyGa1-y As solid solutions has been studied. The usage of broadband AlxIn1-x solid solutions as the basis of quantum dots makes it possible to expand considerably the spectral emission range into the short-wave region, including the wavelength region near 770 nm being of interest for the design of aerospace systems of quantum cryptography. The optical characteristics of single AlxIn1-xAs quantum dots grown according to the Stranski–Krastanov mechanism are studied by the cryogenic microphotoluminescence method. The fine structure of exciton states of quantum dots is studied in the wavelength region near 770 nm. It is shown that the splitting of exciton states is comparable with the natural width of exciton lines, which is of great interest for the design of emitters of pairs of entangled photons on the basis of AlxAs1-x quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  2. Single Quantum Dots: Fundamentals, Applications and New Concepts, Ed. by P. Michler (Springer, Berlin, 2003).

  3. Semiconductor Nanostructures, Ed. by D. Bimberg (Springer, Berlin, 2008).

  4. Self-Assembled Quantum Dots, Ed. by Z. M. Wang (Springer Science + Business Media, New York, 2008).

  5. Single Semiconductor Quantum Dots, Ed. by P. Michler (Springer, Berlin, 2009).

  6. D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000).

    Book  MATH  Google Scholar 

  7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  8. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  9. E. Stock, J. A. Toefflinger, W. Unrau, A. Toropov, A. Bakarov, V. Haisler, and D. Bimberg, Electr. Lett. 45, 566 (2009).

    Article  Google Scholar 

  10. D. Bimberg, E. Stock, A. Lochmann, A. Schliwa, J. A. Tofflinger, W. Unrau, M. Munnix, S. Rodt, V. A. Haisler, A. I. Toropov, A. Bakarov, and A. K. Kalagin, IEEE Photon. J. 1, 58 (2009).

    Article  Google Scholar 

  11. T. Heindel, C. A. Kessler, M. Rau, et al., New J. Phys. 14, 083001 (2012).

    Article  ADS  Google Scholar 

  12. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000).

    Article  ADS  Google Scholar 

  13. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, Nature 439, 179 (2006).

    Article  ADS  Google Scholar 

  14. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, Nat. Photon. 4, 302 (2010).

    Article  Google Scholar 

  15. R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennet, M. B. Ward, I. Farrer, D. A. Ritchie, and A. Shields, Phys. Rev. Lett. 108, 040503 (2012).

    Article  ADS  Google Scholar 

  16. R. Seguin, A. Schliwa, S. Rodt, K. Potschke, U. W. Pohl, and D. Bimberg, Phys. Rev. Lett. 95, 257402 (2005).

    Article  ADS  Google Scholar 

  17. R. Seguin, A. Schliwa, S. Rodt, K. Potschke, U. W. Pohl, and D. Bimberg, Physica E 32, 101 (2006).

    Article  ADS  Google Scholar 

  18. H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnik, B. Xu, and Z. G. Wang, Appl. Phys. Lett. 80, 3769 (2002).

    Article  ADS  Google Scholar 

  19. X. M. Lu, Y. Izumi, M. Koyama, Y. Nakata, S. Adachi, and S. Muto, J. Cryst. Growth 322, 6 (2011).

    Article  ADS  Google Scholar 

  20. J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, and M. Hopkinson, Phys. Rev. B 66, 153316 (2002).

    Article  ADS  Google Scholar 

  21. S. C. M. Grijseels, J. van Bree, P. M. Koenraad, A. A. Toropov, G. V. Klimko, S. V. Ivanov, C. E. Pryor, and A. Yu. Silov, J. Lumin. 176, 95 (2016).

  22. D. Sarkar, H. P. van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, J. Phys. C 210, 012011 (2010).

    Google Scholar 

  23. D. Sarkar, H. P. Van der Meulen, J. M. Calleja, J. M. Meyer, R. J. Haug, and K. Pierz, Phys. Rev. B 78, 241305(R) (2008).

  24. T. S. Shamirzaev, A. V. Nenashev, A. K. Gutakovskii, A. K. Kalagin, K. S. Zhuravlev, M. Larsson, and P. O. Holtz, Phys. Rev. B 78, 085323 (2008).

    Article  ADS  Google Scholar 

  25. T. S. Shamirzaev, A. M. Gilinsky, A. I. Toropov, A. K. Bakarov, D. A. Tenne, K. S. Zhuravlev, C. von Borczyskowski, and D. R. T. Zahn, Physica E 20, 282 (2004).

    Article  ADS  Google Scholar 

  26. L. Dusanowski, A. Golnik, M. Syperek, M. Nawrocki, G. Sk, J. Misiewicz, T. W. Schlereth, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, Appl. Phys. Lett. 101, 103108 (2012).

    Article  ADS  Google Scholar 

  27. M. Grundmann, The Physics of Semiconductors (Springer, Heidelberg, 2010).

    Book  Google Scholar 

  28. L. H. Li, N. Chauvin, G. Patriarche, B. Alloing, and A. Fiore, J. Appl. Phys. 104, 083508 (2008).

    Article  ADS  Google Scholar 

  29. T. J. Krzyzewski and T. S. Jones, J. Appl. Phys. 96, 668 (2004).

    Article  ADS  Google Scholar 

  30. L. Muller-Kirsch, R. Heitz, U. W. Pohl, and D. Bimberg, Appl. Phys. Lett. 79, 1027 (2001).

    Article  ADS  Google Scholar 

  31. U. W. Pohl, K. Potschke, A. Schliwa, F. Guffarth, D. Bimberg, N. D. Zakharov, P. Werner, M. B. Lifshits, V. A. Shchukin, and D. E. Jesson, Phys. Rev. B 72, 245332 (2005).

    Article  ADS  Google Scholar 

  32. R. M. Thompson, R. M. Stevenson, A. J. Shields, I. Farrer, C. J. Lobo, D. A. Ritchie, M. L. Leadbeater, and M. Pepper, Phys. Rev. B 64, 201302(R) (2001).

  33. T. Mano, M. Abbarchi, T. Kuroda, B. McSkimming, A. Ohtake, and K. Mitsuishi, Appl. Phys. Express 3, 065203 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gaisler.

Additional information

Original Russian Text © A.V. Gaisler, I.A. Derebezov, V.A. Gaisler, D.V. Dmitriev, A.I. Toropov, A.S. Kozhukhov, D.V. Shcheglov, A.V. Latyshev, A.L. Aseev, 2017, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 105, No. 2, pp. 93–99.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaisler, A.V., Derebezov, I.A., Gaisler, V.A. et al. AlInAs quantum dots. Jetp Lett. 105, 103–109 (2017). https://doi.org/10.1134/S0021364017020096

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017020096

Navigation