Skip to main content
Log in

Non-Abelian vortex in four dimensions as a critical superstring

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We discuss recent progress in describing a certain non-Abelian vortex string as a critical superstring on a conifold and clarify some subtle points. This particular solitonic vortex is supported in four-dimensional supersymmetric QCD with the gauge group, N f = 4 quark flavors and the Fayet–Iliopoulos term. Under certain conditions, the non-Abelian vortex can become infinitely thin and can be interpreted as a critical ten-dimensional superstring. In addition to four translational moduli, the non-Abelian vortex under consideration carries six orientational and size moduli. The vortex moduli dynamics are described by a twodimensional sigma model with the target space ℝ4 × Y 6, where Y 6 is a non-compact Calabi–Yau conifold. The closed string states that emerge in four dimensions (4D) are identified with hadrons of 4D bulk N= 2 QCD. It turns out that most of the states arising from the ten-dimensional graviton spectrum are non-dynamical in 4D. A single dynamical massless hypermultiplet associated with the deformation of the complex structure of the conifold is found. It is interpreted as a monopole–monopole baryon of the 4D theory (at strong coupling).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hanany and D. Tong, J. High Energy Phys. 0307, 037 (2003).

    Article  ADS  Google Scholar 

  2. R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung, Nucl. Phys. B 673, 187 (2003).

    Article  ADS  Google Scholar 

  3. M. Shifman and A. Yung, Phys. Rev. D 70, 045004 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Hanany and D. Tong, J. High Energy Phys. 0404, 066 (2004).

    Article  ADS  Google Scholar 

  5. A. Yung, in At the Frontier of Particle Physics, Ed. by M. Shifman (World Scientific, Singapore, 2001), Vol. 3, p. 1827; hep-th/0005088.

    Article  Google Scholar 

  6. M. Shifman, in Quark-Hadron Duality and the Transition to PQCD, Ed. by A. Fantoni et al. (World Scientific, Singapore, 2006), p. 171; hep-ph/0507246.

  7. M. Shifman and A. Yung, Phys. Lett. B 750, 416 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Abrikosov, Sov. Phys. JETP 32, 1442 (1957); H. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973); in Solitons and Particles, Ed. by C. Rebbi and G. Soliani (World Scientific, Singapore, 1984), p.365.

    Google Scholar 

  9. J. Polchinski and A. Strominger, Phys. Rev. Lett. 67, 1681 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Polyakov, Nucl. Phys. 286, 406 (1986).

    Article  ADS  Google Scholar 

  11. P. Fayet and J. Iliopoulos, Phys. Lett. B 51, 461 (1974).

    Article  ADS  Google Scholar 

  12. D. Tong, arXiv:hepth/0509216.

  13. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, J. Phys. A 39, R315 (2006).

    Article  ADS  Google Scholar 

  14. M. Shifman and A. Yung, Rev. Mod. Phys. 79, 1139 (2007).

    Article  ADS  Google Scholar 

  15. D. Tong, Ann. Phys. 324, 30 (2009).

    Article  ADS  Google Scholar 

  16. P. Koroteev, M. Shifman, and A. Yung, Phys. Lett. B 759, 154 (2016).

    Article  ADS  Google Scholar 

  17. P. Koroteev, M. Shifman and A. Yung, Phys. Rev. D 94, 065002 (2016).

    Article  ADS  Google Scholar 

  18. A. I. Vainshtein and A. Yung, Nucl. Phys. B 614, 3 (2001).

    Article  ADS  Google Scholar 

  19. P. Argyres, M. Plesser and N. Seiberg, Nucl. Phys. B 471, 159 (1996).

    Article  ADS  Google Scholar 

  20. A. Marshakov and A. Yung, Nucl. Phys. B 647, 3 (2002).

    Article  ADS  Google Scholar 

  21. N. Seiberg and E. Witten, Nucl. Phys. B 431, 484 (1994).

    Article  ADS  Google Scholar 

  22. A. Polyakov, Phys. Lett. B 103, 207 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Achucarro and T. Vachaspati, Phys. Rep. 327, 347 (2000).

    Article  ADS  Google Scholar 

  24. M. Shifman and A. Yung, Phys. Rev. D 73, 125012 (2006).

    Article  ADS  Google Scholar 

  25. M. Eto, J. Evslin, K. Konishi, G. Marmorini, M. Nitta, K. Ohashi, W. Vinci, and N. Yokoi, Phys. Rev. D 76, 105002 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Shifman, W. Vinci, and A. Yung, Phys. Rev. D 83, 125017 (2011).

    Article  ADS  Google Scholar 

  27. E. Witten, Nucl. Phys. B 403, 159 (1993).

    Article  ADS  Google Scholar 

  28. P. Koroteev, M. Shifman, W. Vinci, and A. Yung, Phys. Rev. D 84, 065018 (2011).

    Article  ADS  Google Scholar 

  29. P. Argyres, M. R. Plesser, and A. Shapere, Phys. Rev. Lett. 75, 1699 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  30. Z. Komargodski, to be published.

  31. P. Koroteev, M. Shifman, and A. Yung, to be published.

  32. A. Neitzke and C. Vafa, arXiv:hep-th/0410178.

  33. D. Gepner, Nucl. Phys. B 296, 757 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Banks, L. J. Dixon, D. Friedan, and E. J. Martinec, Nucl. Phys. B 299, 613 (1988).

    Article  ADS  Google Scholar 

  35. M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge Univ. Press, Cambridge, 1987).

    MATH  Google Scholar 

  36. J. Louis, Fortschr. Phys. 53, 770 (2005).

    Article  MathSciNet  Google Scholar 

  37. S. Weinberg and E. Witten, Phys. Lett. B 96, 59 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Gukov, C. Vafa, and E. Witten, Nucl. Phys. B 584, 69 (2000).

    Article  ADS  Google Scholar 

  39. P. Candelas and X. C. de la Ossa, Nucl. Phys. B 342, 246 (1990).

    Article  ADS  Google Scholar 

  40. L. A. Pando Zayas and A. A. Tseytlin, J. High Energy Phys. 0011, 028 (2000).

    Article  ADS  Google Scholar 

  41. I. R. Klebanov and A. Murugan, J. High Energy Phys. 0703, 042 (2007).

    Article  ADS  Google Scholar 

  42. K. Ohta and T. Yokono, J. High Energy Phys. 0002, 023 (2000).

    Article  ADS  Google Scholar 

  43. I. R. Klebanov and M. J. Strassler, J. High Energy Phys. 0008, 052 (2000).

    Article  ADS  Google Scholar 

  44. D. Tong, Phys. Rev. D 69, 065003 (2004).

    Article  ADS  Google Scholar 

  45. E. Witten, Nucl. Phys. B 149, 285 (1979).

    Article  ADS  Google Scholar 

  46. K. Hori and C. Vafa, arXiv:hep-th/0002222.

  47. M. Shifman and A. Yung, Phys. Rev. D 81, 085009 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yung.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shifman, M., Yung, A. Non-Abelian vortex in four dimensions as a critical superstring. Jetp Lett. 105, 60–68 (2017). https://doi.org/10.1134/S0021364017010040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017010040

Navigation