Skip to main content
Log in

Optical bistability in a defect slab with a negative refractive quantum dot nanostructure

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We demonstrate optical bistability (OB) in a defect slab doped V-type four-level InGaN/GaN quantum dot nanostructure in the negative refraction frequency band. It has been shown that the OB behavior of such a quantum dot nanostructure system can be controlled by the amplitude of the driving fields and a new parameter for controlling the OB behavior as thickness of the slab medium in the negative refraction band. Meanwhile, we show that the negative refraction frequency band can be controlled by tuning electric permittivity and magnetic permeability by the amplitude of the driving fields and electron concentration in the defect slab doped. Under the numerical simulations, due to the effect of quantum coherence and interference, it is possible to switch bistability by adjusting the optimal conditions in the negative refraction frequency band, which is more practical in all-optical switching or coding elements, and technology based nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  2. V. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Article  ADS  Google Scholar 

  3. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005).

    Article  ADS  Google Scholar 

  4. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).

    Article  ADS  Google Scholar 

  5. V. M. Agranovich and V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Excitons (Wiley, London, 1966).

    Google Scholar 

  6. J. Pendry, Nature 423, 22 (2003).

    Article  ADS  Google Scholar 

  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).

    Article  ADS  Google Scholar 

  8. A. I. Viktorov, Physical Principles of the Use of Ultrasonic Rayleigh and Lamb Waves in Engineering (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  9. Y. Zhang and A. Mascarenhas, Mod. Phys. Lett. B 19, 21 (2005).

    Article  ADS  Google Scholar 

  10. V. E. Pafomov, Sov. Phys. JETP 36, 1321 (1959).

    Google Scholar 

  11. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, Phys. Rev. B 72, 193103 (2005).

    Article  ADS  Google Scholar 

  12. Z. Lu, J. A. Murakowski, Ch. A. Shuetz, Sh. Shi, G. J. Shneider, and D. W. Prather, Phys. Rev. Lett. 95, 153901 (2005).

    Article  ADS  Google Scholar 

  13. T. G. MacKay and A. Lakhtakia, Phys. Rev. E 69, 026602 (2004).

    Article  ADS  Google Scholar 

  14. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, IEEE Trans. Microwave Theory Tech. 50, 2702 (2002).

    Article  ADS  Google Scholar 

  15. V. M. Shalaev, Nat. Photon. (London) 1, 41 (2007).

    Article  ADS  Google Scholar 

  16. V. P. Drachev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and W. M. Shalaev, Laser Phys. Lett. 3, 49 (2006).

    Article  ADS  Google Scholar 

  17. F. L. Li, A. P. Fang, and M. Wang, J. Phys. B 42, 199505 (2009).

    MathSciNet  Google Scholar 

  18. Sh.-C. Zhaoa, Zh.-D. Liub, J. Zhengb, G. Li, and N. Liu, Optik 123, 1063 (2012).

    Article  ADS  Google Scholar 

  19. D. E. Sikes and D. D. Yavuz, Phys. Rev. A 82, 011806(R) (2010).

    Article  ADS  Google Scholar 

  20. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  21. V. A. Sautenkov, Y. V. Rostovtsv, H. Chen, P. Hsu, G. S. Agarwal, and M. O. Scully, Phys. Rev. Lett. 94, 233601 (2005).

    Article  ADS  Google Scholar 

  22. J. Q. Shen, Z. C. Ruan, and S. He, J. Zhejiang Univ. Sci. (China) 5, 1322 (2004).

    Article  Google Scholar 

  23. Q. Thommen and P. Mandel, Phys. Rev. Lett. 96, 053601 (2006)

    Article  ADS  Google Scholar 

  24. J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, Phys. Rev. Lett. 99, 073602 (2007).

    Article  ADS  Google Scholar 

  25. S. C. Zhao, Z. D. Liu, and Q. X. Wu, Opt. Commun. 283, 3301 (2010).

    Article  ADS  Google Scholar 

  26. S. Dutta and K. R. Dastidar, J. Phys. B: At. Mol. Opt. Phys. 43, 215503 (2010).

    Article  ADS  Google Scholar 

  27. S. Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388 (1996).

    Article  ADS  Google Scholar 

  28. P. W. Shor, Phys. Rev. A 52, R2493 (1995).

    Article  ADS  Google Scholar 

  29. M. Jamshidnejad, M. Vaezzadeh, H. Rahimpour Soleimani, and S. H. Asadpour, Laser Phys. Lett. 13, 045204 (2016).

    Article  ADS  Google Scholar 

  30. A. Lakhtakia, Int. J. Electron. Commun. 58, 229 (2004).

    Article  Google Scholar 

  31. J. Pendry, Phys. Rev. Lett. 85, 39 (2000).

    Article  Google Scholar 

  32. P. R. Berman, Phys. Rev. E 66, 067603 (2002).

    Article  ADS  Google Scholar 

  33. K. Aydin, I. Bulu, and E. Ozbay, Appl. Phys. Lett. 90, 254102 (2007).

    Article  ADS  Google Scholar 

  34. M. Ö. Oktel and Ö. E. Müstecaplioglu, Phys. Rev. A 70, 053806 (2004).

    Article  ADS  Google Scholar 

  35. H. R. Hamedi and G. Juzeliunas, Phys. Rev. A 94, 013842 (2016).

    Article  ADS  Google Scholar 

  36. E. Paspalakis, S. Evangelou, V. Yannopapas, and A. F. Terzis, Phys. Rev. A 88, 053832 (2013).

    Article  ADS  Google Scholar 

  37. H. R. Hamedi and G. Juzeliunas, Phys. Rev. A 95, 053823 (2015).

    Article  ADS  Google Scholar 

  38. O. B. Shchekin, G. Park, D. L. Huffaker, and D. G. Deppe, Appl. Phys. Lett. 77, 466 (2000).

    Article  ADS  Google Scholar 

  39. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. di Vincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

    Article  ADS  Google Scholar 

  40. A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).

    Article  ADS  Google Scholar 

  41. Z. G. Chang, Y. P. Niu, J. T. Zhang, and S. Q. Gong, Chin. Phys. B 21, 114210 (2012).

    Article  ADS  Google Scholar 

  42. A. Joshi, W. G. Yang, and M. Xiao, Phys. Lett. A 315, 203 (2003).

    Article  ADS  Google Scholar 

  43. A. Joshi and M. Xiao, Phys. Rev. Lett. 91, 143904 (2003).

    Article  ADS  Google Scholar 

  44. A. Joshi and M. Xiao, Controlling Nonlinear Optical Processes in Multi-Level Atomic Systems, Ed. by E. Wolf, Progress in Optics (North Holland, Amsterdam, 2006), p. 97.

  45. M. A. Sharif, M. H. Majles Ara, B. Ghafary, S. Salmani, and S. Mohajer, Opt. Mater. 53, 80 (2016).

    Article  ADS  Google Scholar 

  46. H. Chang, H. Wu, C. Xie, and H. Wang, Phys. Rev. Lett. 93, 213901 (2004).

    Article  ADS  Google Scholar 

  47. Z. Wang and H. Fan, J. Lumin. 130, 2084 (2010).

    Article  Google Scholar 

  48. S. H. Asadpour and H. R. Soleimani, Laser Phys. Lett. 13, 015201 (2016).

    Article  ADS  Google Scholar 

  49. A. Vafafard, S. Goharshenasan, N. Nozari, A. Mortezapour, and M. Mahmoudi, J. Lumin. 134, 900 (2013).

    Article  Google Scholar 

  50. M. A. Anton, F. Carreno, O. G. Galderon, and S. Melle, Opt. Commun. 281, 3301 (2008).

    Article  ADS  Google Scholar 

  51. S. G. Kosionis, A. F. Terzis, C. Simserides, and E. Paspalakis, J. Appl. Phys. 109, 063109 (2011).

    Article  ADS  Google Scholar 

  52. H. Zhang, Y. Niu, and Sh. Gong, Phys. Lett. A 363, 497 (2007).

    Article  ADS  Google Scholar 

  53. L. G. wang, N. H. Liu, Q. Lin, and S. Y. Zhu, Phys. Rev. E 68, 066606 (2003).

    Article  ADS  Google Scholar 

  54. L. G. Wang, H. Chen, and S. Y. Zhu, Phys. Rev. E 70, 066602 (2004).

    Article  ADS  Google Scholar 

  55. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Ch.4.

    MATH  Google Scholar 

  56. S. H. Asadpour, Z. Golsanamlou, and H. Rahimpour Soleimani, Physica E 54, 45 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Asadpour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidnejad, M., Asadi Amirabadi, E., Miraboutalebi, S. et al. Optical bistability in a defect slab with a negative refractive quantum dot nanostructure. Jetp Lett. 104, 666–673 (2016). https://doi.org/10.1134/S0021364016220021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016220021

Navigation