JETP Letters

, Volume 104, Issue 9, pp 649–656 | Cite as

Magnetic ratchet effects in a two-dimensional electron gas

  • G. V. Budkin
  • L. E. Golub
  • E. L. Ivchenko
  • S. D. Ganichev
Scientific Summaries


The effect of the magnetic field on the generation of an electric current in a two-dimensional electronic ratchet is theoretically studied. Mechanisms of the formation of magnetically induced photocurrent are proposed for a structure with a two-dimensional electron gas (quantum well, graphene, or topological insulator) with a lateral asymmetric superlattice consisting of metallic strips on the external surface of the structure. The ratchet with the spatially oscillating magnetic field generated by the ferromagnetic lattice, as well as the nonmagnetic ratchet placed in the uniform magnetic field both classically weak and strong quantizing, is considered. It is established that the ratio of the amplitude of the magnetic oscillations of photocurrent to the ratchet photocurrent in zero field can exceed two orders of magnitude.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, London, 1963; Mir, Moscow, 2009), Vol. 1, Chap.46.MATHGoogle Scholar
  2. 2.
    H. Linke, Appl. Phys. A: Mat. Sci. Proc. 75, 167 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    E. L. Ivchenko and S. D. Ganichev, JETP Lett. 93, 673 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    S. Denisov, S. Flach, and P. Hänggi, Phys. Rep. 538, 77 (2014).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Sassine, Yu. Krupko, J.-C. Portal, Z. D. Kvon, R. Murali, K. P. Martin, G. Hill, and A. D. Wieck, Phys. Rev. B 78, 045431 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    P. Olbrich, E. L. Ivchenko, R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, D. Schuh, W. Wegscheider, and S. D. Ganichev, Phys. Rev. Lett. 103, 090603 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    P. Olbrich, J. Karch, E. L. Ivchenko, J. Kamann, B. März, M. Fehrenbacher, D. Weiss, and S. D. Ganichev, Phys. Rev. B 83, 165320 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Chepelianskii, M. V. Entin, L. I. Magarill, and D. L. Shepelyansky, Eur. Phys. J. 56, 323 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    T. Watanabe, S. A. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. M. Meziani, Y. Wang, H. Minamide, H. Ito, and T. Otsuji, IEEE Sensors J. 13, 89 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Kurita, G. Ducournau, D. Coquillat, A. Satou, K. Kobayashi, S. Boubanga Tombet, Y. M. Meziani, V. V. Popov, W. Knap, T. Suemitsu, and T. Otsuji, Appl. Phys. Lett. 104, 251114 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Boubanga-Tombet, Y. Tanimoto, A. Satou, T. Suemitsu, Y. Wang, H. Minamide, H. Ito, D. V. Fateev, V. V. Popov, and T. Otsuji, Appl. Phys. Lett. 104, 262104 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Popov, D. V. Fateev, T. Otsuji, Y. M. Meziani, D. Coquillat, and W. Knap, Appl. Phys. Lett. 99, 243504 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    E. S. Kannan, I. Bisotto, J.-C. Portal, T. J. Beck, and L. Jalabert, Appl. Phys. Lett. 101, 143504 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernandez-Dominguez, Phys. Rev. B 85, 075441 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    P. Faltermeier, P. Olbrich, W. Probst, L. Schell, T.Watanabe, S. A. Boubanga-Tombet, T. Otsuji, and S. D. Ganichev, J. Appl. Phys. 118, 084301 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Phys. Rev. Lett. 114, 246601 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Nalitov, L. E. Golub, and E. L. Ivchenko, Phys. Rev. B 86, 115301 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    V. V. Popov, Appl. Phys. Lett. 102, 253504 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    S. V. Koniakhin, Eur. Phys. J. B 87, 216 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Popov, D. V. Fateev, E. L. Ivchenko, and S. D. Ganichev, Phys. Rev. B 91, 235436 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    C. Drexler, S. A. Tarasenko, P. Olbrich, et al. (Collab.), Nat. Nanotechnol. 8, 104 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    G. V. Budkin and S. A. Tarasenko, Phys. Rev. B 93, 075306 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    N. Kheirabadi, E. McCann, and V. I. Fal’ko, Phys. Rev. B 94, 165404 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    G. V. Budkin and L. E. Golub, Phys. Rev. B 90, 125316 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    N. H. Lindner, A. Farrell, E. Lustig, F. von Oppen, and G. Refael, arXiv:1403.0010v2.Google Scholar
  26. 26.
    C. Castán-Guerrero, J. Herrero-Albillos, J. Sesé, J. Bartolomé, F. Bartolomé, A. Hierro-Rodriguez, F. Valdés-Bango, J. I. Martí, J. M. Alameda, and L. M. García, Physica B 455, 76 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    A. Auge, A. Weddemann, F. Wittbracht, and A. Hütten, Appl. Phys. Lett. 94, 183507 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    V. F. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors (Nauka, Moscow, 1984; North-Holland, Amsterdam, 1987).Google Scholar
  29. 29.
    E. L. Ivchenko and M. I. Petrov, Phys. Solid State 56, 1833 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    P. Olbrich, J. Kamann, M. König, et al. (Collab.), Phys. Rev. B 93, 075422 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    C. Zoth, P. Olbrich, P. Vierling, et al. (Collab.), Phys. Rev. B 90, 205415 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    K.-M. Dantscher, D. A. Kozlov, P. Olbrich, et al. (Collab.), Phys. Rev. B 92, 165314 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  34. 34.
    A. Isihara and L. Smrcka, J. Phys. C 19, 6777 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • G. V. Budkin
    • 1
  • L. E. Golub
    • 1
  • E. L. Ivchenko
    • 1
  • S. D. Ganichev
    • 2
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Terahertz CenterUniversity of RegensburgRegensburgGermany

Personalised recommendations