Advertisement

JETP Letters

, Volume 104, Issue 7, pp 460–465 | Cite as

Critical temperature of metallic hydrogen at a pressure of 500 GPa

  • N. A. Kudryashov
  • A. A. Kutukov
  • E. A. Mazur
Condensed Matter

Abstract

The Eliashberg theory generalized for electron–phonon systems with a variable electron density of states is used to study T c in the I41/AMD phase of metallic hydrogen under compression taking into account the frequency behavior of the renormalization of the mass of the electron and the chemical potential. The phonon contribution to the anomalous electron Green’s function is considered. Pairing is taken into account within the entire electron band rather than in a narrow region near the Fermi surface. The frequency and temperature dependences of the complex renormalization of the mass Re Z(ω), as well as the density of states N(ω) renormalized by the electron–phonon coupling and the spectral function of the electron–phonon coupling, which are obtained in calculations, are used to calculate the anomalous electron Green’s function. The frequency dependence of the real and imaginary parts of the order parameter in the I41/AMD phase is obtained. The solution of the system of Eliashberg equations gives the value T c = 217 K in the I41/AMD phase of hydrogen at a pressure of 500 GPa.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. Kagan and E. G. Brovman, Sov. Phys. Usp. 14, 809 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 34, 1300 (1972).ADSGoogle Scholar
  4. 4.
    E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 35, 783 (1972).ADSGoogle Scholar
  5. 5.
    Yu. Kagan, V. V. Pushkarev, and A. Kholas, Sov. Phys. JETP 46, 511 (1977).ADSGoogle Scholar
  6. 6.
    N. N. Degtyarenko and E. A. Mazur, Pis’ma Zh. Eksp. Teor. Fiz. 104 (5) (2016, in press).Google Scholar
  7. 7.
    J. M. McMahon and D. M. Ceperley, Phys. Rev. Lett. 106, 165302 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer, Sci. Rep. 348, 6242 (2015).Google Scholar
  9. 9.
    L. Hanyu, Z. Li, C. Wenwen, and M. Yanming, J. Chem. Phys. 137, 074501 (2012).CrossRefGoogle Scholar
  10. 10.
    I. I. Naumov, R. J. Hemley, R. Hoffmann, and N. W. Ashcroft, J. Chem. Phys. 143, 064702 (2015).Google Scholar
  11. 11.
    M. I. Eremets, I. A. Troyan, and A. P. Drozdov, arXiv:1601.04479v1 (2016).Google Scholar
  12. 12.
    M. Zaghoo, A. Salamat, and I. F. Silvera, arXiv:1504.00259v1 (2015).Google Scholar
  13. 13.
    P. Dalley-Simpson, R. T. Howie, and E. Gregoryanz, Nature 529, 63 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    A. S. Aleksandrov, V. N. Grebenev, and E. A. Mazur, JETP Lett. 45, 455 (1987).ADSMathSciNetGoogle Scholar
  15. 15.
    S. V. Vonsovskii, Yu. A. Izyumov, and E. Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys, and Compounds (Nauka, Moscow, 1977) [in Russian].Google Scholar
  16. 16.
    E. A. Mazur, Europhys. Lett. 90, 47005 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    N. A. Kudryashov, A. Kutukov, and E. A. Mazur, Zh. Eksp. Teor. Fiz. 150, 558 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • N. A. Kudryashov
    • 1
  • A. A. Kutukov
    • 1
  • E. A. Mazur
    • 1
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations