Skip to main content
Log in

Quantum anomalous Hall effect in magnetically modulated topological insulator/normal insulator heterostructures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We theoretically study how magnetic modulation can be used to manipulate the transport properties of heterostructures formed by a thin film of a three-dimensional topological insulator sandwiched between slabs of a normal insulator. Employing the kp scheme, in the framework of a continual approach, we argue that electron states of the system are spin-polarized when ultrathin magnetic insertions are incorporated into the film. We demonstrate that (i) the spin-polarization magnitude depends strongly on the magnetic insertion position in the film and (ii) there is the optimal insertion position to realize quantum anomalous Hall effect, which is a function of the material parameters, the film thickness and the topological insulator/normal insulator interface potential. For the heterostructure with a pair of symmetrically placed magnetic insertions, we calculate a phase diagram that shows a series of transitions between distinct quantum regimes of transverse conductivity. We provide consistent interpretation of recent experimental findings in the context of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  2. S. D. Bader and S. S. P. Parkin, Ann. Rev. Condens. Matter Phys. 1, 71 (2010).

    Article  ADS  Google Scholar 

  3. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

  4. D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).

    Article  ADS  Google Scholar 

  5. C.-Z. Chang and M. Li, J. Phys.: Condens. Matter 28, 123002 (2016).

    ADS  Google Scholar 

  6. X. Kou, Y. Fan, M. Lang, P. Upadhyaya, and K. L. Wang, Solid State Commun. 215–216, 34 (2015).

    Article  Google Scholar 

  7. H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64, 227 (2015).

    Article  ADS  Google Scholar 

  8. Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).

    Article  ADS  Google Scholar 

  9. J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).

    Article  ADS  Google Scholar 

  10. X. F. Kou, W. J. Jiang, M. R. Lang, F. X. Xiu, L. He, Y. Wang, Y. Wang, X. X. Yu, A. V. Fedorov, P. Zhang, and K. L. Wang, J. Appl. Phys. 112, 063912 (2012).

    Article  ADS  Google Scholar 

  11. I. Lee, C. K. Kim, J. Lee, S. J. L. Billinge, R. Zhong, J. A. Schneeloch, T. Liu, T. Valla, J. M. Tranquada, G. Gu, and J. C. S. Davis, Proc. Natl. Acad. Sci. 112, 1316 (2015).

    Article  ADS  Google Scholar 

  12. X. Kou, L. He, M. Lang, Y. Fan, K. Wong, Y. Jiang, T.Nie, W. Jiang, P. Upadhyaya, Z. Xing, Y. Wang, F. Xiu, R. N. Schwartz, and K. L. Wang, Nano Lett. 13, 4587 (2013).

    Article  ADS  Google Scholar 

  13. R. Yoshimi, K. Yasuda, A. Tsukazaki, K. S. Takahashi, N. Nagaosa, M. Kawasaki, and Y. Tokura, Nat. Commun. 6, 8530 (2015).

    Article  ADS  Google Scholar 

  14. M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 107, 182401 (2015).

    Article  ADS  Google Scholar 

  15. K. N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, N. Ogawa, M. Kawasaki, and Y. Tokura, arXiv:1603.02113 (2016).

  16. V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 96, 445 (2012).

    Article  ADS  Google Scholar 

  17. V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 102, 754 (2015).

    Article  ADS  Google Scholar 

  18. V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Europhys. Lett. 114, 37003 (2016).

    Article  ADS  Google Scholar 

  19. V. N. Men’shov, V. V. Tugushev, T. V. Menshchikova, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, J. Phys.: Condens. Matter 26, 485003 (2014).

    Google Scholar 

  20. V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 97, 258 (2013).

    Article  ADS  Google Scholar 

  21. V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 98, 603 (2013).

    Article  Google Scholar 

  22. V. N. Men’shov, V. V. Tugushev, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 91, 075307 (2015).

    Article  ADS  Google Scholar 

  23. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  24. H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys. Rev. B 81, 115407 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Men’shov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 7, pp. 480–487.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shov, V.N., Tugushev, V.V. & Chulkov, E.V. Quantum anomalous Hall effect in magnetically modulated topological insulator/normal insulator heterostructures. Jetp Lett. 104, 453–459 (2016). https://doi.org/10.1134/S0021364016190012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016190012

Navigation