Quantum anomalous Hall effect in magnetically modulated topological insulator/normal insulator heterostructures

Abstract

We theoretically study how magnetic modulation can be used to manipulate the transport properties of heterostructures formed by a thin film of a three-dimensional topological insulator sandwiched between slabs of a normal insulator. Employing the kp scheme, in the framework of a continual approach, we argue that electron states of the system are spin-polarized when ultrathin magnetic insertions are incorporated into the film. We demonstrate that (i) the spin-polarization magnitude depends strongly on the magnetic insertion position in the film and (ii) there is the optimal insertion position to realize quantum anomalous Hall effect, which is a function of the material parameters, the film thickness and the topological insulator/normal insulator interface potential. For the heterostructure with a pair of symmetrically placed magnetic insertions, we calculate a phase diagram that shows a series of transitions between distinct quantum regimes of transverse conductivity. We provide consistent interpretation of recent experimental findings in the context of our results.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    ADS  Article  Google Scholar 

  2. 2.

    S. D. Bader and S. S. P. Parkin, Ann. Rev. Condens. Matter Phys. 1, 71 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

  4. 4.

    D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    C.-Z. Chang and M. Li, J. Phys.: Condens. Matter 28, 123002 (2016).

    ADS  Google Scholar 

  6. 6.

    X. Kou, Y. Fan, M. Lang, P. Upadhyaya, and K. L. Wang, Solid State Commun. 215–216, 34 (2015).

    Article  Google Scholar 

  7. 7.

    H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64, 227 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    X. F. Kou, W. J. Jiang, M. R. Lang, F. X. Xiu, L. He, Y. Wang, Y. Wang, X. X. Yu, A. V. Fedorov, P. Zhang, and K. L. Wang, J. Appl. Phys. 112, 063912 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    I. Lee, C. K. Kim, J. Lee, S. J. L. Billinge, R. Zhong, J. A. Schneeloch, T. Liu, T. Valla, J. M. Tranquada, G. Gu, and J. C. S. Davis, Proc. Natl. Acad. Sci. 112, 1316 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    X. Kou, L. He, M. Lang, Y. Fan, K. Wong, Y. Jiang, T.Nie, W. Jiang, P. Upadhyaya, Z. Xing, Y. Wang, F. Xiu, R. N. Schwartz, and K. L. Wang, Nano Lett. 13, 4587 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    R. Yoshimi, K. Yasuda, A. Tsukazaki, K. S. Takahashi, N. Nagaosa, M. Kawasaki, and Y. Tokura, Nat. Commun. 6, 8530 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 107, 182401 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    K. N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, N. Ogawa, M. Kawasaki, and Y. Tokura, arXiv:1603.02113 (2016).

  16. 16.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 96, 445 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 102, 754 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Europhys. Lett. 114, 37003 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    V. N. Men’shov, V. V. Tugushev, T. V. Menshchikova, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, J. Phys.: Condens. Matter 26, 485003 (2014).

    Google Scholar 

  20. 20.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 97, 258 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 98, 603 (2013).

    Article  Google Scholar 

  22. 22.

    V. N. Men’shov, V. V. Tugushev, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 91, 075307 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  24. 24.

    H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys. Rev. B 81, 115407 (2010).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Men’shov.

Additional information

Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 7, pp. 480–487.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Men’shov, V.N., Tugushev, V.V. & Chulkov, E.V. Quantum anomalous Hall effect in magnetically modulated topological insulator/normal insulator heterostructures. Jetp Lett. 104, 453–459 (2016). https://doi.org/10.1134/S0021364016190012

Download citation