Advertisement

JETP Letters

, Volume 104, Issue 7, pp 453–459 | Cite as

Quantum anomalous Hall effect in magnetically modulated topological insulator/normal insulator heterostructures

  • V. N. Men’shov
  • V. V. Tugushev
  • E. V. Chulkov
Condensed Matter

Abstract

We theoretically study how magnetic modulation can be used to manipulate the transport properties of heterostructures formed by a thin film of a three-dimensional topological insulator sandwiched between slabs of a normal insulator. Employing the kp scheme, in the framework of a continual approach, we argue that electron states of the system are spin-polarized when ultrathin magnetic insertions are incorporated into the film. We demonstrate that (i) the spin-polarization magnitude depends strongly on the magnetic insertion position in the film and (ii) there is the optimal insertion position to realize quantum anomalous Hall effect, which is a function of the material parameters, the film thickness and the topological insulator/normal insulator interface potential. For the heterostructure with a pair of symmetrically placed magnetic insertions, we calculate a phase diagram that shows a series of transitions between distinct quantum regimes of transverse conductivity. We provide consistent interpretation of recent experimental findings in the context of our results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    S. D. Bader and S. S. P. Parkin, Ann. Rev. Condens. Matter Phys. 1, 71 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).Google Scholar
  4. 4.
    D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    C.-Z. Chang and M. Li, J. Phys.: Condens. Matter 28, 123002 (2016).ADSGoogle Scholar
  6. 6.
    X. Kou, Y. Fan, M. Lang, P. Upadhyaya, and K. L. Wang, Solid State Commun. 215–216, 34 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64, 227 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    X. F. Kou, W. J. Jiang, M. R. Lang, F. X. Xiu, L. He, Y. Wang, Y. Wang, X. X. Yu, A. V. Fedorov, P. Zhang, and K. L. Wang, J. Appl. Phys. 112, 063912 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    I. Lee, C. K. Kim, J. Lee, S. J. L. Billinge, R. Zhong, J. A. Schneeloch, T. Liu, T. Valla, J. M. Tranquada, G. Gu, and J. C. S. Davis, Proc. Natl. Acad. Sci. 112, 1316 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    X. Kou, L. He, M. Lang, Y. Fan, K. Wong, Y. Jiang, T.Nie, W. Jiang, P. Upadhyaya, Z. Xing, Y. Wang, F. Xiu, R. N. Schwartz, and K. L. Wang, Nano Lett. 13, 4587 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    R. Yoshimi, K. Yasuda, A. Tsukazaki, K. S. Takahashi, N. Nagaosa, M. Kawasaki, and Y. Tokura, Nat. Commun. 6, 8530 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 107, 182401 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    K. N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, N. Ogawa, M. Kawasaki, and Y. Tokura, arXiv:1603.02113 (2016).Google Scholar
  16. 16.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 96, 445 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 102, 754 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Europhys. Lett. 114, 37003 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    V. N. Men’shov, V. V. Tugushev, T. V. Menshchikova, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, J. Phys.: Condens. Matter 26, 485003 (2014).Google Scholar
  20. 20.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 97, 258 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 98, 603 (2013).CrossRefGoogle Scholar
  22. 22.
    V. N. Men’shov, V. V. Tugushev, S. V. Eremeev, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 91, 075307 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
  24. 24.
    H.-Z. Lu, W.-Y. Shan, W. Yao, Q. Niu, and S.-Q. Shen, Phys. Rev. B 81, 115407 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • V. N. Men’shov
    • 1
    • 2
  • V. V. Tugushev
    • 1
    • 2
  • E. V. Chulkov
    • 2
    • 3
    • 4
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Departamento de Física de Materiales, Facultad de Ciencias QuímicasUPV/EHU and Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHUSan Sebastián, Basque CountrySpain
  4. 4.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations