Skip to main content

Doping induced spin state transition in Li x CoO2 as studied by the GGA + DMFT calculations


The magnetic properties of Li x CoO2 for x = 0.94, 0.75, 0.66, and 0.51 are investigated within the method combining the generalized gradient approximation with dynamical mean field theory (GGA + DMFT). A delicate interplay between Hund’s exchange energy and t 2g e g crystal field splitting is found to be responsible for the high-spin to low-spin state transition for Co4+ ions. The GGA + DMFT calculations show that the Co4+ ions at a small doping level adopt the high-spin state, while delithiation leads to an increase in the crystal field splitting and low-spin state becomes preferable. The Co3+ ions are found to stay in the low-spin configuration for any x values.

This is a preview of subscription content, access via your institution.


  1. 1.

    K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15, 783 (1980).

    Article  Google Scholar 

  2. 2.

    J. T. Hertz, Q. Huang, T. McQueen, T. Klimczuk, J. W. G. Bos, L. Viciu, and R. J. Cava, Phys. Rev. B 77, 075119 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  4. 4.

    D. I. Khomskii, Transition Metal Compounds (Cambridge Univ. Press, Cambridge, 2014).

    Book  Google Scholar 

  5. 5.

    M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    ADS  Article  Google Scholar 

  6. 6.

    A. O. Shorikov, Z. V. Pchelkina, V. I. Anisimov, S. L. Skornyakov, and M. A. Korotin, Phys. Rev. B 82, 195101 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    I. A. Nekrasov, S. V. Streltsov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B 68, 235113 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    N. A. Babushkina, A. N. Taldenkov, S. V. Streltsov, A. V. Kalinov, T. G. Kuzmova, A. A. Kamenev, A. R. Kaul, D. I. Khomskii, and K. I. Kugel, J. Exp. Theor. Phys. 118, 266 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    D. G. Kellerman, V. R. Galakhov, A. S. Semenova, Ya. N. Blinovskov, and O. N. Leonidova, Phys. Solid State 48, 548 (2006).

    ADS  Article  Google Scholar 

  10. 10.

    S. Levasseur, M. Menetrier, Y. Shao-Horn, L. Gautlier, A. Audemer, G. Demazeau, A. Largeteau, and C. Delmas, Chem. Mater. 15, 348 (2003).

    Article  Google Scholar 

  11. 11.

    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997)

    ADS  Google Scholar 

  12. 11a.

    A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    ADS  Article  Google Scholar 

  13. 11b.

    K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R. T. Scalettar, Th. Pruschke, V. I. Anisimov, and D. Vollhardt, Phys. Status Solidi B 243, 2599 (2006).

    ADS  Article  Google Scholar 

  14. 12.

    J. Kunes, A. V. Lukoyanov, V. I. Anisimov, R. T. Scalettar, and W. E. Pickett, Nat. Mater. 7, 198 (2008).

    ADS  Article  Google Scholar 

  15. 13.

    J. Kunes, Dm. M. Korotin, M. A. Korotin, V. I. Anisimov, and P. Werner, Phys. Rev. Lett. 102, 146402 (2009).

    ADS  Article  Google Scholar 

  16. 14.

    S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 89, 161112 (2014).

    ADS  Article  Google Scholar 

  17. 15.

    A. O. Shorikov, A. V. Lukoyanov, V. I. Anisimov, and S. Y. Savrasov, Phys. Rev. B 92, 035125 (2015).

    ADS  Article  Google Scholar 

  18. 16.

    P. Giannozzi, S. Baroni, N. Bonini, et al. (Collab.), J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  19. 17.

    Dm. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, Eur. Phys. J. B 65, 1434 (2008).

    Google Scholar 

  20. 18.

    M. Korotin, T. Fujiwara, and V. Anisimov, Phys. Rev. B 62, 5696 (2000).

    ADS  Article  Google Scholar 

  21. 19.

    A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

    ADS  Article  Google Scholar 

  22. 20.

    P. Werner A. Comanac, L. de’Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).

    ADS  Article  Google Scholar 

  23. 21.

    M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  24. 22.

    M. M. Markina, B. V. Mill, E. A. Zvereva, A. V. Ushakov, S. V. Streltsov, and A. N. Vasiliev, Phys. Rev. B 89, 104409 (2014).

    ADS  Article  Google Scholar 

  25. 23.

  26. 24.

    S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelkina, D. I. Khomskii, and V. I. Anisimov, Phys. Rev. B 71, 245114 (2005).

    ADS  Article  Google Scholar 

  27. 25.

    S. V. Streltsov and N. A. Skorikov, Phys. Rev. B 83, 214407 (2011).

    ADS  Article  Google Scholar 

  28. 26.

    J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G. A. Sawatzky, F. M. F. de Groot, and T. S. Turner, Phys. Rev. B 44, 6090 (1991).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. O. Shorikov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shorikov, A.O., Gapontsev, V.V., Streltsov, S.V. et al. Doping induced spin state transition in Li x CoO2 as studied by the GGA + DMFT calculations. Jetp Lett. 104, 398–402 (2016).

Download citation