Skip to main content
Log in

Doping induced spin state transition in Li x CoO2 as studied by the GGA + DMFT calculations

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The magnetic properties of Li x CoO2 for x = 0.94, 0.75, 0.66, and 0.51 are investigated within the method combining the generalized gradient approximation with dynamical mean field theory (GGA + DMFT). A delicate interplay between Hund’s exchange energy and t 2g e g crystal field splitting is found to be responsible for the high-spin to low-spin state transition for Co4+ ions. The GGA + DMFT calculations show that the Co4+ ions at a small doping level adopt the high-spin state, while delithiation leads to an increase in the crystal field splitting and low-spin state becomes preferable. The Co3+ ions are found to stay in the low-spin configuration for any x values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 15, 783 (1980).

    Article  Google Scholar 

  2. J. T. Hertz, Q. Huang, T. McQueen, T. Klimczuk, J. W. G. Bos, L. Viciu, and R. J. Cava, Phys. Rev. B 77, 075119 (2008).

    Article  ADS  Google Scholar 

  3. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  4. D. I. Khomskii, Transition Metal Compounds (Cambridge Univ. Press, Cambridge, 2014).

    Book  Google Scholar 

  5. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Article  ADS  Google Scholar 

  6. A. O. Shorikov, Z. V. Pchelkina, V. I. Anisimov, S. L. Skornyakov, and M. A. Korotin, Phys. Rev. B 82, 195101 (2010).

    Article  ADS  Google Scholar 

  7. I. A. Nekrasov, S. V. Streltsov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B 68, 235113 (2003).

    Article  ADS  Google Scholar 

  8. N. A. Babushkina, A. N. Taldenkov, S. V. Streltsov, A. V. Kalinov, T. G. Kuzmova, A. A. Kamenev, A. R. Kaul, D. I. Khomskii, and K. I. Kugel, J. Exp. Theor. Phys. 118, 266 (2014).

    Article  ADS  Google Scholar 

  9. D. G. Kellerman, V. R. Galakhov, A. S. Semenova, Ya. N. Blinovskov, and O. N. Leonidova, Phys. Solid State 48, 548 (2006).

    Article  ADS  Google Scholar 

  10. S. Levasseur, M. Menetrier, Y. Shao-Horn, L. Gautlier, A. Audemer, G. Demazeau, A. Largeteau, and C. Delmas, Chem. Mater. 15, 348 (2003).

    Article  Google Scholar 

  11. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997)

    ADS  Google Scholar 

  12. A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  13. K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R. T. Scalettar, Th. Pruschke, V. I. Anisimov, and D. Vollhardt, Phys. Status Solidi B 243, 2599 (2006).

    Article  ADS  Google Scholar 

  14. J. Kunes, A. V. Lukoyanov, V. I. Anisimov, R. T. Scalettar, and W. E. Pickett, Nat. Mater. 7, 198 (2008).

    Article  ADS  Google Scholar 

  15. J. Kunes, Dm. M. Korotin, M. A. Korotin, V. I. Anisimov, and P. Werner, Phys. Rev. Lett. 102, 146402 (2009).

    Article  ADS  Google Scholar 

  16. S. V. Streltsov and D. I. Khomskii, Phys. Rev. B 89, 161112 (2014).

    Article  ADS  Google Scholar 

  17. A. O. Shorikov, A. V. Lukoyanov, V. I. Anisimov, and S. Y. Savrasov, Phys. Rev. B 92, 035125 (2015).

    Article  ADS  Google Scholar 

  18. P. Giannozzi, S. Baroni, N. Bonini, et al. (Collab.), J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  19. Dm. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, Eur. Phys. J. B 65, 1434 (2008).

    Google Scholar 

  20. M. Korotin, T. Fujiwara, and V. Anisimov, Phys. Rev. B 62, 5696 (2000).

    Article  ADS  Google Scholar 

  21. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

    Article  ADS  Google Scholar 

  22. P. Werner A. Comanac, L. de’Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).

    Article  ADS  Google Scholar 

  23. M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. M. Markina, B. V. Mill, E. A. Zvereva, A. V. Ushakov, S. V. Streltsov, and A. N. Vasiliev, Phys. Rev. B 89, 104409 (2014).

    Article  ADS  Google Scholar 

  25. http://www.amulet-code.org/.

  26. S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelkina, D. I. Khomskii, and V. I. Anisimov, Phys. Rev. B 71, 245114 (2005).

    Article  ADS  Google Scholar 

  27. S. V. Streltsov and N. A. Skorikov, Phys. Rev. B 83, 214407 (2011).

    Article  ADS  Google Scholar 

  28. J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G. A. Sawatzky, F. M. F. de Groot, and T. S. Turner, Phys. Rev. B 44, 6090 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shorikov, A.O., Gapontsev, V.V., Streltsov, S.V. et al. Doping induced spin state transition in Li x CoO2 as studied by the GGA + DMFT calculations. Jetp Lett. 104, 398–402 (2016). https://doi.org/10.1134/S0021364016180028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016180028

Navigation