Transport of electrons on liquid helium in a microchannel device near the current threshold

Abstract

We study the transport of strongly interacting electrons on the surface of liquid helium confined in a microchannel geometry, near the current threshold point. The current threshold depends on the electrostatic confinement, created by the microchannel electrodes, and on the electrostatic potential of electron system. Depending on the geometry of the microchannel, the current pinch-off can occur at the center or move to the edges of the microchannel, as confirmed by Finite Element Model calculations. The confining potential dependence of electron conductivity above the current threshold point is consistent with a classical charge continuum model. However, we find that below the threshold point electron transport is suppressed due to charging energy effects.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Y. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  2. 2.

    Yu. P. Monarkha and K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004).

    Book  Google Scholar 

  3. 3.

    V. V. Deshpande, M. Bockrath, L. I. Glazman, and A. Yacoby, Nature 464 (7286), 209 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    D. G. Rees, I. Kuroda, C. A. Marrache-Kikuchi, M. Höfer, P. Leiderer, and K. Kono, Phys. Rev. Lett. 106, 026803 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    D. G. Rees, H. Totsuji, and K. Kono, Phys. Rev. Lett. 108, 176801 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    H. Ikegami, H. Akimoto, D. G. Rees, and K. Kono, Phys. Rev. Lett. 109, 236802 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    D. G. Rees, H. Ikegami, and K. Kono, J. Phys. Soc Jpn. 82, 124602 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    D. G. Rees, N. R. Beysengulov, J.-J. Lin, and K. Kono, Phys. Rev. Lett. 116, 206801 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    D. G. Rees, I. Kuroda, C. A. Marrache-Kikuchi, M. Höfer, P. Leiderer, and K. Kono, J. Low Temp. Phys. 166, 107 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Y. Iye, J. Low Temp. Phys. 40, 441 (1980).

    ADS  Article  Google Scholar 

  11. 11.

    N. R. Beysengulov, D. G. Rees, Y. Lysogorskiy, N. K. Galiullin, A. S. Vazjukov, D. A. Tayurskii, and K. Kono, J. Low Temp. Phys. 182, 28 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    F. Hecht, J. Numer. Math. 20, 251 (2012).

    MathSciNet  Article  Google Scholar 

  13. 13.

    D. G. Rees, I. Kuroda, C. A. Marrache-Kikuchi, M. Hofer, P. Leiderer, and K. Kono, J. Low Temp. Phys. 166, 107 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Y. Iye, J. Low Temp. Phys. 40, 441 (1980).

    ADS  Article  Google Scholar 

  15. 15.

    N. R. Beysengulov, D. G. Rees, Y. Lysogorskiy, N. K. Galiullin, A. S. Vazjukov, D. A. Tayurskii, and K. Kono, J. Low Temp. Phys. 182, 28 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    F. Hecht, J. Numer. Math. 20, 251 (2012).

    MathSciNet  Article  Google Scholar 

  17. 17.

    B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. Gr. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    ADS  Article  Google Scholar 

  18. 18.

    B. Brun, F. Martins, S. Faniel, B. Hackens, A. Cavanna, C. Ulysse, A. Ouerghi, U. Gennser, D. Mailly, P. Simon, S. Huant, V. Bayot, M. Sanquer, and H. Sellier, Phys. Rev. Lett. 116, 136801 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    J. Kammhuber, M. C. Cassidy, H. Zhang, O. Gul, F. Pei, M. W. A. de Moor, B. Nijholt, K. Watanabe, T. Taniguchi, D. Car, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 16, 3482 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    L. P. Kouwenhoven, N. C. van der Vaart, A. T. Johnson, W. Kool, C. J. P. M. Harmans, J. G. Williamson, A. A. M. Staring, and C. T. Foxon, Z. Phys. B 85, 367 (1991).

    ADS  Article  Google Scholar 

  21. 21.

    A. Tilke, R. H. Blick, H. Lorenz, J. P. Kotthaus, and D. A. Wharam, Appl. Phys. Lett. 75, 3704 (1999).

    ADS  Article  Google Scholar 

  22. 22.

    S. Sapmaz, P. Jarillo-Herrero, J. Kong, C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant, Phys. Rev. B 71, 153402 (2005).

    ADS  Article  Google Scholar 

  23. 23.

    V. V. Deshpande and M. Bockrath, Nat. Phys. 4, 314 (2008).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. R. Beysengulov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beysengulov, N.R., Rees, D.G., Tayurskii, D.A. et al. Transport of electrons on liquid helium in a microchannel device near the current threshold. Jetp Lett. 104, 323–328 (2016). https://doi.org/10.1134/S002136401617001X

Download citation