Skip to main content

Spin state transition in the active center of the hemoglobin molecule: DFT + DMFT study

Abstract

An ab initio study of electronic and spin configurations of the iron ion in the active center of the human hemoglobin molecule is presented. With a combination of the Density Functional Theory (DFT) method and the Dynamical Mean Field Theory (DMFT) approach, the spin state transition description in the iron ion during the oxidation process is significantly improved in comparison with previous attempts. It was found that the origin of the iron ion local moment behavior both for the high-spin and for the low-spin states in the hemoglobin molecule is caused by the presence of a mixture of several atomic states with comparable statistical probability.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Chandra, R. M. Tiwari, P. Kaur, M. Sharma, R. Jain, and Dass, Ind. J. Clin. Biochem. 15, 183 (2000).

    Article  Google Scholar 

  2. 2.

    A. M. P. Sena, V. Brzdov, and D. R. Bowler, Phys. Rev. B 79, 245404 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    D. D. O’Regan, N. D. M. Hine, M. C. Payne, and A. A. Mostofi, Phys. Rev. B 82, 081102 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    M. Radon and K. Pierloot, J. Phys. Chem. A 112, 11824 (2008).

    Article  Google Scholar 

  5. 5.

    H. Chuanjiang, A. Roth, M. K. Ellison, J. An, C. M. Ellis, C. E. Schulz, and W. R. Scheidt, J. Am. Chem. Soc. 127, 5675 (2005).

    Article  Google Scholar 

  6. 6.

    P. M. Panchmatia, B. Sanyal, and P. M. Oppeneer, Chem. Phys. 343, 47 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    D. A. Scherlis, M. Cococcioni, P. Sit, and N. Marzari, J. Phys. Chem. B 111, 7384 (2007).

    Article  Google Scholar 

  8. 8.

    P. M. Panchmatia, M. E. Ali, B. Sanyal, and P. M. Oppeneer, J. Phys. Chem. A 114, 13381 (2010).

    Article  Google Scholar 

  9. 9.

    W. R. Scheidt and C. A. Reed, Chem. Rev. 81, 543 (1981).

    Article  Google Scholar 

  10. 10.

    C. Weber, D. D. O’Regan, N. D. M. Hine, P. B. Littlewood, G. Kotliar, and M. C. Payne, Phys. Rev. Lett. 110, 106402 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    S. Y. Park, T. Yokoyama, N. Shibayama, Y. Shiro, and J. R. Tame, J. Mol. Biol. 360, 690 (2006).

    Article  Google Scholar 

  12. 12.

    G. Fermi, M. F. Perutz, B. Shaanan, and R. Fourme, J. Mol. Biol. 175, 159 (1984).

    Article  Google Scholar 

  13. 13.

    B. Shaanan, J. Mol. Biol. 171, 31 (1983).

    Article  Google Scholar 

  14. 14.

    P. Giannozzi, S. Baroni, N. Bonini, et al. (Collab.), J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  15. 15.

    D. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, Eur. Phys. J. B 65, 91 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    M. Korotin, T. Fujiwara, and V. Anisimov, Phys. Rev. B 62, 5696 (2000).

    ADS  Article  Google Scholar 

  17. 17.

    A. K. McMahan, R. M. Martin, and S. Satpathy, Phys. Rev. B 38, 6650 (1988).

    ADS  Article  Google Scholar 

  18. 18.

    M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989).

    ADS  Article  Google Scholar 

  19. 19.

    http://amulet-code.org.

  20. 20.

    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    ADS  Article  Google Scholar 

  21. 21.

    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).

    ADS  Google Scholar 

  22. 22.

    E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).

    ADS  Article  Google Scholar 

  24. 24.

    P. Werner and A. J. Millis, Phys. Rev. B 74, 1 (2006).

    Google Scholar 

  25. 25.

    P. Werner and A. J. Millis, Phys. Rev. Lett. 99, 126405 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. USA 22, 210 (1936).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Novoselov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novoselov, D., Korotin, D.M. & Anisimov, V.I. Spin state transition in the active center of the hemoglobin molecule: DFT + DMFT study. Jetp Lett. 103, 658–662 (2016). https://doi.org/10.1134/S002136401610009X

Download citation