Skip to main content
Log in

Brane realization of q-theory and the cosmological constant problem

  • Astrophysics and Cosmology
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We discuss the cosmological constant problem using the properties of a freely suspended two-dimensional condensed-matter film, i.e., an explicit realization of a 2D brane. The large contributions of vacuum fluctuations to the surface tension of this film are cancelled in equilibrium by the thermodynamic potential arising from the conservation law for particle number. In short, the surface tension of the film vanishes in equilibrium due to a thermodynamic identity. This 2D brane can be generalized to a 4D brane with gravity. For the 4D brane, the analogue of the 2D surface tension is the 4D cosmological constant, which is also nullified in full equilibrium. The 4D brane theory provides an alternative description of the phenomenological q-theory of the quantum vacuum. As for other realizations of the vacuum variable q, such as the 4-form field-strength realization, the main ingredient is the conservation law for the variable q, which makes the vacuum a self-sustained system. For a vacuum within this class, the nullification of the cosmological constant takes place automatically in equilibrium. Out of equilibrium, the cosmological constant can be as large as suggested by naive estimates based on the summation of zero-point energies. In this brane description, q-theory also corresponds to a generalization of unimodular gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Weinberg, in Critical Dialogues in Cosmology, Ed. by N. Turok (World Scientific, Singapore, 1997), p. 195; arXiv:astro-ph/9610044.

  3. S. Nobbenhuis, Found. Phys. 36, 613 (2006); arXiv: grqc/ 0411093.

    Article  ADS  MathSciNet  Google Scholar 

  4. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008); arXiv:0711.3170.

    Article  ADS  Google Scholar 

  5. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008); arXiv:0806.2805.

    Article  ADS  Google Scholar 

  6. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 79, 063527 (2009); arXiv:0811.4347.

    Article  ADS  Google Scholar 

  7. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 80, 083001 (2009); arXiv:0905.1919.

    Article  ADS  Google Scholar 

  8. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 91, 259 (2010); arXiv:0907.4887 [hep-th].

    Article  ADS  Google Scholar 

  9. G. E. Volovik, The Universe in a Helium Droplet (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  10. E. I. Kats and V. V. Lebedev, Phys. Rev. E 91, 032415 (2015); arXiv:1501.06703.

    Article  ADS  Google Scholar 

  11. M. J. Duff and P. van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980).

    Article  ADS  Google Scholar 

  12. A. Aurilia, H. Nicolai, and P. K. Townsend, Nucl. Phys. B 176, 509 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. W. Hawking, Phys. Lett. B 134, 403 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. J. Duff, Phys. Lett. B 226, 36 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. J. Duncan and L. G. Jensen, Nucl. Phys. B 336, 100 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Bousso and J. Polchinski, J. High Energy Phys. 0006, 006 (2000); arXiv:hep-th/0004134.

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Aurilia and E. Spallucci, Phys. Rev. D 69, 105004 (2004); arXiv:hep-th/0402096.

    Article  ADS  MathSciNet  Google Scholar 

  18. Z. C. Wu, Phys. Lett. B 659, 891 (2008); arXiv:0709.3314.

    Article  ADS  MathSciNet  Google Scholar 

  19. V. A. Rubakov, Phys. Usp. 44, 871 (2001); arXiv: hepph/ 0104152.

    Article  ADS  Google Scholar 

  20. V. V. Lebedev and A. R. Muratov, Sov. Phys. JETP 68, 1011 (1989).

    Google Scholar 

  21. E. I. Kats and V. V. Lebedev, Fluctuational Effects in the Dynamics of Liquid Crystals (Springer, Berlin, 1993).

    Google Scholar 

  22. J. J. van der Bij, H. van Dam, and Y. J. Ng, Physica A 116, 307 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Zee, in High-Energy Physics, Proceedings of 20th Annual Orbis Scientiae, Miami, USA, January 17–21, 1983, Ed. by S. L. Mintz and A. Perlmutter (Plenum, New York, 1985), p. 211.

  24. W. Buchmüller and N. Dragon, Phys. Lett. B 207, 292 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Henneaux and C. Teitelboim, Phys. Lett. B 222, 195 (1989).

    Article  ADS  Google Scholar 

  26. F. R. Klinkhamer, arXiv:1604.03065 [hep-th].

  27. M. Ahmed and R. D. Sorkin, Phys. Rev. D 87, 063515 (2013); arXiv:1210.2589.

    Article  ADS  Google Scholar 

  28. D. V. Fursaev, Phys. Rev. D 59, 064020 (1999); arXiv:hep-th/9809049.

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Samuel and S. Sinha, Phys. Rev. Lett. 97, 161302 (2006); arXiv:cond-mat/0603804.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Klinkhamer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinkhamer, F.R., Volovik, G.E. Brane realization of q-theory and the cosmological constant problem. Jetp Lett. 103, 627–630 (2016). https://doi.org/10.1134/S0021364016100088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016100088

Navigation