Skip to main content
Log in

Coherent control of Kerr nonlinearity via double dark resonances

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A theoretical scheme for enhanced Kerr nonlinearity is proposed in a four-level ladder-type atomic system based on double dark resonances (DDRs). We solve the relevant density matrix equations in steady state and utilize the perturbation theory to obtain the analytical expressions for the third order susceptibility of the atomic system. The influence of system parameters on behavior of the first and third order susceptibilities is then discussed. In particular, it is found that an enhanced Kerr nonlinearity with reduced linear and nonlinear absorption is obtained around zero probe detuning under the slow light condition through proper adjusting the laser field intensity and frequency detuning of driving fields. The dressed state analysis is employed to explain the physical origin of the obtained result. The obtained results may be important for all-optical signal processing and quantum information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Gray, R. M. Whitley, and C. R. Stroud, Opt. Lett. 3, 218 (1978).

    Article  ADS  Google Scholar 

  2. S. E. Harris, Phys. Today 50, 36 (1997).

    Article  Google Scholar 

  3. Y. Wu and X. Yang, Phys. Rev. A 71, 053806 (2005).

    Article  ADS  Google Scholar 

  4. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  5. H. R. Hamedi, A. Radmehr, and M. Sahrai, Phys. Rev. A 90, 053836 (2014).

    Article  ADS  Google Scholar 

  6. R. Yu, J. Li, P. Huang, A. Zheng, and X. Yang, Phys. Lett. A 373, 2992 (2009).

    Article  ADS  Google Scholar 

  7. Y. U. Han, J. Xiao, Y. Liu, Ch. Zhang, H. Wang, M. Xiao, and K. Peng, Phys. Rev. A 77, 023824 (2008).

    Article  ADS  Google Scholar 

  8. J.-H. Li, Phys. Rev. B 75, 155329 (2007).

    Article  ADS  Google Scholar 

  9. Zh. Wang and B. Yu, J. Lumin. 132, 2452 (2012).

    Article  Google Scholar 

  10. Zh. Wang, A.-X. Chen, Y. Bai, W.-X. Yang, and R.-K. Lee, J. Opt. Soc. Am. B 29, 2891 (2012).

    Article  ADS  Google Scholar 

  11. Zh.-P. Wang and Sh.-X. Zhang, Phys. Scr. 81, 035401 (2010).

    Article  ADS  Google Scholar 

  12. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, Phys. Rev. Lett. 102, 013601 (2009).

    Article  ADS  Google Scholar 

  13. H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996)

    Article  ADS  Google Scholar 

  14. Y. Niu, Sh. Gong, R. Li, Zh. Xu, and X. Liang, Opt. Lett. 30, 3371 (2005).

    Article  ADS  Google Scholar 

  15. Y. Niu and Sh. Gong, Phys. Rev. A 73, 053811 (2006).

    Article  ADS  Google Scholar 

  16. Y. Bai, W. Yang, and X. Yu, Opt. Commun. 283, 5062 (2010).

    Article  ADS  Google Scholar 

  17. H. R. Hamedi and G. Juzeliunas, Phys. Rev. A 91, 053823 (2015).

    Article  ADS  Google Scholar 

  18. D. X. Khoa, L. V. Doai, D. H. Son, and N. H. Bang, J. Opt. Soc. Am. B 31, 1330 (2014).

    Article  ADS  Google Scholar 

  19. X. Yang, K. Ying, Y. Niu, and Sh. Gong, J. Opt. 17, 045505 (2015).

    Article  ADS  Google Scholar 

  20. Y. F. Xiao, K. Sahin, V. Gaddam, C. Hua, N. Imoto, and L. Yang, Opt. Express 16, 26 (2008).

    Google Scholar 

  21. J. Howell and J. Yeazell, Phys. Rev. A 62, 032311 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. Tikhonenko, J. Christou, and B. Luther-Davies, Phys. Rev. Lett. 76, 2698 (1996).

    Article  ADS  Google Scholar 

  23. N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001).

    Article  ADS  Google Scholar 

  24. G. Fu, X. Li, Z. Zhuang, L. Zhang, L. Yang, X. Li, L. Han, N. B. Manson, and C. Wei, Phys. Lett. A 372, 176 (2008).

    Article  ADS  Google Scholar 

  25. L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, Phys. Rev. A 72, 053801 (2005).

    Article  ADS  Google Scholar 

  26. C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, Phys. Rev. A 65, 043805 (2002).

    Article  ADS  Google Scholar 

  27. H. R. Hamedi, S. H. Asadpour, and M. Sahrai, Optik 124, 366 (2013).

    Article  ADS  Google Scholar 

  28. E. Paspalakis, N. J. Kylstra, and P. L. Knight, Phys. Rev. A 65, 053808 (2002).

    Article  ADS  Google Scholar 

  29. A. MacRae, G. Campbell, and A. I. Lvovsky, Opt. Lett. 33, 2659 (2008).

    Article  ADS  Google Scholar 

  30. X. Yang, Sh. Li, Ch. Zhang, and H. Wang, J. Opt. Soc. Am. B 26, 1423 (2009).

    Article  ADS  Google Scholar 

  31. Y. Wu, J. Saldana, and Y. Zhu, Phys. Rev. A 67, 013811 (2003).

    Article  ADS  Google Scholar 

  32. D. McGloin, D. G. Fulton, and M. H. Dunn, Opt. Commun. 190, 221 (2001).

    Article  ADS  Google Scholar 

  33. B. K. Dutta and P. K. Mahapatra, Phys. Scr. 75, 345 (2007).

    Article  ADS  Google Scholar 

  34. S. N. Sandhya and K. K. Sharma, Phys. Rev. A 55, 2155 (1997).

    Article  ADS  Google Scholar 

  35. H. R. Hamedi, A. Khaledi-Nasab, A. Raheli, and M. Sahrai, Opt. Commun. 312, 117 (2014).

    Article  ADS  Google Scholar 

  36. S. N. Sandhya and K. K. Sharma, Phys. Rev. A 55, 2155 (1997).

    Article  ADS  Google Scholar 

  37. D. McGloin, D. G. Fulton, and M. H. Dunn, Opt. Commun. 190, 221 (2001).

    Article  ADS  Google Scholar 

  38. B. K. Dutta and P. K. Mahapatra, Phys. Scr. 75, 345 (2007).

    Article  ADS  Google Scholar 

  39. H. R. Hamedi and S. H. Asadpour, J. Appl. Phys. 117, 183101 (2015).

    Article  ADS  Google Scholar 

  40. W. Yan, T. Wang, X. Li, and Ch. Yu, Philos. Mag. 93, 2514 (2013).

    Article  ADS  Google Scholar 

  41. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).

    Article  ADS  Google Scholar 

  42. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).

    Article  ADS  Google Scholar 

  43. D. Steck, http://steck.us/alkalidata.

  44. M. Yan, E. G. Rickey, and Y. Zhu, J. Opt. Soc. Am. B 18, 1057 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rahelia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahelia, A., Sahraib, M., Namdarc, A. et al. Coherent control of Kerr nonlinearity via double dark resonances. Jetp Lett. 103, 369–379 (2016). https://doi.org/10.1134/S0021364016060096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016060096

Navigation