Skip to main content
Log in

Operation of a tokamak reactor in the radiative improved mode

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The operation of a nuclear fusion reactor has been simulated within a model based on experimental results obtained at the TEXTOR-94 tokamak and other facilities in which quasistationary regimes were achieved with long confinement times, high densities, and absence of the edge-localized mode. The radiative improved mode of confinement studied in detail at the TEXTOR-94 tokamak is the most interesting such regime. One of the most important problems of modern tokamaks is the problem of a very high thermal load on a divertor (or a limiter). This problem is quite easily solved in the radiative improved mode. Since a significant fraction of the thermal energy is reemitted by an impurity, the thermal loading is significantly reduced. As the energy confinement time τ E at high densities in the indicated mode is significantly larger than the time predicted by the scaling of ITERH-98P(y, 2), ignition can be achieved in a facility much smaller than the ITER facility at plasma temperatures below 20 keV. The revealed decrease in the degradation of the confinement time τ E with an increase in the introduced power has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Samm, G. Bertschinger, P. Bogen, J. D. Hey, E. Hintz, L. Könen, Y. T. Lie, A. Pospieszczyk, D. Rusbüldt, R. P. Schorn, B. Schweer, M. Tokar’, and B. Unterberg, Plasma Phys. Controled Fusion 35, B167 (1993).

    Article  ADS  Google Scholar 

  2. J. Ongena, A. M. Messiaen, M. Tokar’, U. Samm, B. Unterberg, N. Schoon, P. Dumortier, H. G. Esser, F. Durodie, H. Euringer, G. Fuchs, E. Hintz, F. Hoenen, R. Koch, L. Könen, et al., Phys. Scr. 52, 449 (1995).

    Article  ADS  Google Scholar 

  3. A. M. Messiaen, J. Ongena, U. Samm, B. Unterberg, G. van Wassenhove, F. Durodie, R. Jaspers, M. Tokar’, P. E. Vandenplas, G. van Oost, J. Winter, G. H. Wolf, G. Bertschinger, G. Bonheure, P. Dumortier, et al., Phys. Rev. Lett. 77, 2487 (1996).

    Article  ADS  Google Scholar 

  4. E. A. Lazarus, J. D. Bell, C. E. Bush, A. Carnevali, J. L. Dunlap, P. H. Edmonds, L. C. Emerson, O. C. Eldridge, W. L. Gardner, H. C. Howe, D. P. Hutchinson, R. R. Kindsfather, R. C. Isler, R. A. Langley, C. H. Ma, et al., J. Nucl. Mater. 121, 61 (1984).

    Article  ADS  Google Scholar 

  5. M. Bessenroth-Weberpals, K. McCormick, F. X. Söldner, F. Wagner, H. S. Bosch, O. Gehre, E. R. Müller, H. D. Murmann, J. Neuhauser, W. Poschenrieder, K.-H. Steuer, N. Tsois, and ASDEX Team, Nucl. Fusion 31, 155 (1991).

    Article  Google Scholar 

  6. J. Neuhauser, M. Alexander, G. Becker, H. S. Bosch, K. Buchl, D. Coster, R. Dux, A. Field, S. Fiedler, Ch. Fuchs, O. Gehre, O. Gruber, G. Haas, A. Herrmann, S. Hirsch, et al., Plasma Phys. Controlled Fusion 37, A37 (1995).

    Article  ADS  Google Scholar 

  7. K. W. Hill, S. D. Scott, M. Bell, R. Budny, C. E. Bush, R. E. H. Clark, B. Denne-Hinnov, D. R. Ernst, G.W. Hammett, D. R. Mikkelsen, D. Mueller, J. Ongena, H. K. Park, A. T. Ramsey, E. J. Synakowski, et al., and the TFTR Group, Phys. Plasmas 6, 877 (1999).

    Article  ADS  Google Scholar 

  8. G. L. Jackson, M. Murakami, G. M. Staebler, M. R. Wade, A. M. Messiaen, J. Ongena, B. Unterberg, J. A. Boedo, T. E. Evans, A. W. Hyatt, R. J. LaHaye, C. J. Lasnier, A. W. Leonard, G. W. McKee, R. Maingi, et al., J. Nucl. Mater. 266–269, 380 (1999).

    Article  Google Scholar 

  9. K. Borrass, D. J. Campbell, S. Clement, and G. C. Vlases, Nucl. Fusion 33, 63 (1993).

    Article  ADS  Google Scholar 

  10. J. Rapp, P. C. de Vries, F. C. Schüller, M. Z. Tokar’, W. Biel, R. Jaspers, H. R. Koslowski, A. Krämer-Flecken, A. Kreter, M. Lehnen, A. Pospieszczyk, D. Reiser, U. Samm, and G. Sergienko, Nucl. Fusion 39, 765 (1999).

    Article  ADS  Google Scholar 

  11. A. A. Pshenov and D. Kh. Morozov, Contrib. Plasma Phys. 50, 380 (2010).

    Article  ADS  Google Scholar 

  12. M. Z. Tokar, J. Ongena, B. Unterberg, and R. R. Weynants, Phys. Rev. Lett. 84, 895 (2000).

    Article  ADS  Google Scholar 

  13. Y. Takase, S. Ide, Y. Kamada, H. Kubo, O. Mitarai, H. Nuga, Y. Sakamoto, T. Suzuki, H. Takenaga, and the JT-60 Team, in Proceedings of the 21st Fusion Energy Conference, Chengdu, China, 2006 (2006), p. EX/1.

    Google Scholar 

  14. B. B. Kadomtsev, Plasma Phys. Controlled Fusion 34, 1931 (1992).

    Article  ADS  Google Scholar 

  15. M. Psimopoulos, Phys. Lett. A 162, 182 (1992).

    Article  ADS  Google Scholar 

  16. B. B. Kadomtsev and O. P. Pogutse, Rev. Plasma Phys. 5, 249 (1970).

    Article  ADS  Google Scholar 

  17. T. Takizuka and M. Yamagiwa, JAEARI-M87-066 (1987).

    Google Scholar 

  18. J. Wesson, Tokamaks, 3rd ed. (Clarendon, Oxford, 2004), p. 347.

    MATH  Google Scholar 

  19. A. M. Messiaen, J. Ongena, B. Unterberg, P. E. Vandenplas, G. van Wassenhove, R. R. Weynants, and G. Bonheure, Comm. Plasma Phys. Controlled Fusion 18, 221 (1997).

    Google Scholar 

  20. C. D. Challis, J. Garcia, M. Beurskens, P. Buratti, E. Delabie, P. Drewelow, L. Frassinetti, C. Giroud, N. Hawkes, J. Hobirk, E. Joffrin, D. Keeling, D. B. King, C. F. Maggi, J. Mailloux, C. Marchetto, D. McDonald, I. Nunes, G. Pucella, S. Saarelma, J. Simpson, and JET Contributors, Nucl. Fusion 55, 053031 (2015).

    Article  ADS  Google Scholar 

  21. V. Fuchs, M. M. Shoucri, G. Thibaudeau, L. Harten, and A. Bers, IEEE Trans. Plasma Sci. 11, 4 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kh. Morozov.

Additional information

Original Russian Text © D.Kh. Morozov, A.A. Mavrin, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 5, pp. 337–341.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, D.K., Mavrin, A.A. Operation of a tokamak reactor in the radiative improved mode. Jetp Lett. 103, 298–301 (2016). https://doi.org/10.1134/S0021364016050106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016050106

Keywords

Navigation