JETP Letters

, Volume 102, Issue 11, pp 697–700 | Cite as

Forbush decrease in the intensity of cosmic rays in a toroidal model of a magnetic cloud

  • A. S. Petukhova
  • I. S. PetukhovEmail author
  • S. I. Petukhov
Astrophysics and Cosmology


The time dynamics of the particle distribution function in a magnetic cloud with the shape of a toroidal segment with the characteristic (forceless) structure of a magnetic field has been calculated. The shape of the cloud at the subsequent propagation in the interplanetary space has been determined by the kinematic model. The magnetic field of the cloud is calculated using the freezing-in condition. A significant effect of regions connecting the magnetic cloud with the Sun on the propagation of particles in the region of perturbation has been revealed. The calculation of the particle density and anisotropy of the intensity demonstrates reasonable agreement with the measurements. The results indicate the decisive role of the characteristic structure of the magnetic field in the time dynamics of the Forbush decrease in the intensity of cosmic rays.


JETP Letter Magnetic Cloud Forbush Decrease Particle Distribution Function Back Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963).zbMATHGoogle Scholar
  2. 2.
    J. A. Lockwood, Space Sci. Rev. 12, 658 (1971).CrossRefADSGoogle Scholar
  3. 3.
    A. Wawrzynczak and M. V. Alania, Adv. Space Res. 45, 622 (2010).CrossRefADSGoogle Scholar
  4. 4.
    G. F. Krymsky, P. A. Krivoshapkin, V. P. Mamrukova, and S. K. Gerasimova, Astron. Lett. 35, 696 (2009).CrossRefADSGoogle Scholar
  5. 5.
    H. V. Cane, I. G. Richardson, and G. Wibberenz, in Proceedings of the 24th International Cosmic Ray Conference ICRC, Rome, Italy, Aug. 28–Sep. 8, 1995, Ed. by A. Taroni (Compositori, Bologna, 1997), Vol. 4, p. 377.Google Scholar
  6. 6.
    K. Munakata, S. Yasue, C. Kato, J. Kota, M. Tokumaru, M. Kojima, A. A. Darwish, T. Kuwabara, and J. W. Bieber, Adv. Geosci. 2, 115 (2006).CrossRefGoogle Scholar
  7. 7.
    T. Kuwabara, J. W. Bieber, P. Evenson, K. Munakata, S. Yasue, C. Kato, A. Fushishita, M. Tokumaru, M. L. Duldig, J. E. Humble, M. R. Silva, A. Dal Lago, and N. J. Schuch, J. Geophys. Res. 114, A05109 (2009).ADSGoogle Scholar
  8. 8.
    I. S. Petukhov and S. I. Petukhov, Bull. Ross. Acad. Sci.: Phys. 77, 523 (2013).Google Scholar
  9. 9.
    G. Miller and L. Turner, Phys. Fluids 24, 363 (1981).CrossRefADSzbMATHGoogle Scholar
  10. 10.
    I. S. Petukhov and S. I. Petukhov, Astron. Lett. 35, 701 (2009).CrossRefADSGoogle Scholar
  11. 11.
    A. A. Abunin, M. A. Abunina, A. V. Belov, E. A. Eroshenko, V. A. Oleneva, V. G. Yanke, T. Papaioanou, and E. Mavromichalaki, in Proceedings of the All-Russia Conference on Solar–Terrestrial Physics Dedicated to 100-Year Anniversary of Corresponding Member of RAS V. E. Stepanov (Inst. Soln.-Zemn. Fiz. SO RAN, 2013), p. 11.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. S. Petukhova
    • 1
  • I. S. Petukhov
    • 1
    Email author
  • S. I. Petukhov
    • 1
  1. 1.Shafer Institute of Cosmophysical Research and Aeronomy, Yakut Research Center, Siberian BranchRussian Academy of SciencesYakutskRussia

Personalised recommendations