Skip to main content
Log in

Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In a superlattice placed in crossed static electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the mini-band and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Krömer, Phys. Rev. 109, 1856 (1958).

    Article  ADS  Google Scholar 

  2. A. A. Andronov, A. M. Belyantsev, V. I. Gavrilenko, E. P. Dodin, Z. F. Krasil’nik, V. V. Nikonorov, and S. A. Pavlov, JETP Lett. 40, 989 (1984).

    ADS  Google Scholar 

  3. A. A. Andronov, Sov. Phys. Semicond. 21, 701 (1987).

    Google Scholar 

  4. A. A. Andronov, A. M. Belyantsev, V. I. Gavrilenko, E. P. Dodin, E. F. Krasil’nik, V. V. Nikonorov, S. A. Pavlov, and M. M. Shvarts, Sov. Phys. JETP 63, 211 (1986).

    Google Scholar 

  5. L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Article  Google Scholar 

  6. S. A. Ktitorov, G. S. Simin, and V. Ya. Sindalovskii, Sov. Phys. Solid State 13, 1872 (1971).

    Google Scholar 

  7. F. R. Jasnot, L.-A. de Vaulchier, Y. Guldner, G. Bastard, A. Vasanelli, C. Manquest, C. Sirtori, M. Beck, and J. Faist, Appl. Phys. Lett. 100, 102103 (2012).

    Article  ADS  Google Scholar 

  8. A. Ya. Shik, Sov. Phys. Semicond. 7, 187 (1973).

    Google Scholar 

  9. T. Bauer, J. Kolb, A. B. Hummel, H. G. Roskos, Y. Kosevich, and K. Köhler, Phys. Rev. Lett. 88, 086801 (2002).

    Article  ADS  Google Scholar 

  10. V. I. Sankin, A. V. Andrianov, A. O. Zakhar’in, and A. G. Petrov, JETP Lett. 94, 362 (2011).

    Article  ADS  Google Scholar 

  11. V. M. Polyanovskii, Sov. Phys. Semicond. 14, 718 (1980).

    Google Scholar 

  12. A. Sibille, J. F. Palmier, A. Celeste, J. C. Portal, and F. Mollot, Europhys. Lett. 13, 279 (1990).

    Article  ADS  Google Scholar 

  13. J. F. Palmier, A. Sibille, G. Etemadi, A. Celeste, and J. C. Portal, Semicond. Sci. Technol. 7, B283 (1992).

    Article  Google Scholar 

  14. F. G. Bass, V. A. Lykakh, and A. P. Tetervov, Sov. Phys. Semicond. 14, 1372 (1980).

    Google Scholar 

  15. F. G. Bass, V. V. Zorchenko, and V. I. Shashora, Sov. Phys. Semicond. 15, 263 (1981).

    Google Scholar 

  16. T. M. Fromhold, A. A. Krokhin, C. R. Tench, S. Bujkiewicz, P. B. Wilkinson, F. W. Sheard, and L. Eaves, Phys. Rev. Lett. 87, 046803 (2001).

    Article  ADS  Google Scholar 

  17. T. M. Fromhold, A. Patanè, S. Bujkiewicz, P. B. Wilkinson, D. Fowler, D. Sherwood, S. P. Stapleton, A. A. Krokhin, L. Eaves, M. Henini, N. S. Sankeshwar, and F. W. Sheard, Nature 428, 726 (2004).

    Article  ADS  Google Scholar 

  18. Yu. A. Kosevich, A. B. Hummel, H. G. Roskos, and K. Köhler, Phys. Rev. Lett. 96, 137403 (2006).

    Article  ADS  Google Scholar 

  19. T. Feil, C. Gerl, and W. Wegscheider, Phys. Rev. B 73, 125301 (2006).

    Article  ADS  Google Scholar 

  20. N. V. Demarina, E. Mohler, A. Lisauskas, H. G. Roskos, Phys. Rev. B 80, 24530 (2009).

    Article  Google Scholar 

  21. A. O. Selskii, A. A. Koronovskii, A. E. Hramov, O. I. Moskalenko, K. N. Alekseev, M. T. Greenaway, F. Wang, T. M. Fromhold, A. V. Shorokhov, N. N. Khvastunov, and A. G. Balanov, Phys. Rev. B 84, 235311 (2011).

    Article  ADS  Google Scholar 

  22. T. Hyart, J. Mattas, and K. N. Alekseev, Phys. Rev. Lett. 103, 117401 (2009).

    Article  ADS  Google Scholar 

  23. A. A. Ignatov, K. F. Renk, and E. P. Dodin, Phys. Rev. Lett. 70, 1996 (1993).

    Article  ADS  Google Scholar 

  24. N. Alexeeva, M. T. Greenaway, A. G. Balanov, O. Makarovsky, A. Patanè, M. B. Gaifullin, F. Kusmartsev, and T. M. Fromhold, Phys. Rev. Lett. 109, 024102 (2012).

    Article  ADS  Google Scholar 

  25. P. Kaus, Phys. Rev. Lett. 3, 20 (1959).

    Article  ADS  Google Scholar 

  26. S. Rodriguez, Phys. Rev. 115, 821 (1959).

    Article  ADS  MATH  Google Scholar 

  27. C. Kittel, Proc. Nat. Acad. Sci. USA 45, 744 (1959).

    Article  ADS  Google Scholar 

  28. T. Hyart, A. Shorokhov, and K. N. Alekseev, Phys. Rev. Lett. 98, 220404 (2007).

    Article  ADS  Google Scholar 

  29. Yu. A. Romanov and Yu. Yu. Romanova, J. Exp. Theor. Phys. 91, 1033 (2000).

    Article  ADS  Google Scholar 

  30. A. V. Shorokhov, N. N. Khvastunov, T. Hyart, and K. N. Alekseev, J. Exp. Theor. Phys. 111, 822 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shorokhov.

Additional information

Original Russian Text © A.V. Shorokhov, M.A. Pyataev, N.N. Khvastunov, T. Hyart, F.V. Kusmartsev, K.N. Alekseev, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 12, pp. 870–875.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shorokhov, A.V., Pyataev, M.A., Khvastunov, N.N. et al. Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice. Jetp Lett. 100, 766–770 (2015). https://doi.org/10.1134/S002136401424014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401424014X

Keywords

Navigation