Skip to main content
Log in

High-temperature Aharonov-Bohm effect in transport through a single-channel quantum ring

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We overview transport properties of an Aharonov-Bohm interferometer made of a single-channel quantum ring. Remarkably, in this setup, essentially quantum effects survive thermal averaging: the high-temperature tunneling conductance G of a ring shows sharp dips (antiresonances) as a function of magnetic flux. We discuss effects of the electron-electron interaction, disorder, and spin-orbit coupling on the Aharonov-Bohm transport through the ring. The interaction splits the dip into series of dips broadened by dephasing. The physics behind this behavior is the persistent-current-blockade: the current through the ring is blocked by the circular current inside the ring. Dephasing is then dominated by tunneling-induced fluctuations of the circular current. The short-range disorder broadens antiresonances, while the long-range one induces additional dips. In the presence of a spin-orbit coupling, G exhibits two types of sharp antiresonances: Aharonov-Bohm and Aharonov-Casher ones. In the vicinity of the antiresonances, the tunneling electrons acquire spin polarization, so that the ring serves as a spin polarizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Nazarov and Ya. M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  2. Y. Aharonov and D. Bohm, Phys. Rev. B 115, 485 (1959).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. A. G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).

    Article  ADS  Google Scholar 

  4. A. G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).

    Article  ADS  Google Scholar 

  5. A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74, 4047 (1995).

    Article  ADS  Google Scholar 

  6. A. Yacoby, R. Schuster, and M. Heiblum, Phys. Rev. B 53, 9583 (1996)

    Article  ADS  Google Scholar 

  7. A. van Oudenaarden, M. H. Devoret, Yu. V. Nazarov, and J. E. Mooij, Nature 391, 768 (1998).

    Article  ADS  Google Scholar 

  8. A. A. Bykov, A. K. Bakarov, L. V. Litvin, and A. I. Toropov, JETP Lett. 72, 209 (2000).

    Article  ADS  Google Scholar 

  9. A. A. Bykov, D. G. Baksheev, L. V. Litvin, V. P. Migal, E. B. Olshanetskii, M. Casse’, D. K. Maude, and J. C. Portal, JETP Lett. 71, 434 (2000).

    Article  ADS  Google Scholar 

  10. O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Science 295, 825 (2002).

    Article  ADS  Google Scholar 

  11. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, Nature 422, 415 (2003).

    Article  ADS  Google Scholar 

  12. P. Samuelsson, E. V. Sukhorukov, and M. Buttiker, Phys. Rev. Lett. 92, 026805 (2004).

    Article  ADS  Google Scholar 

  13. M. Avinun-Kalish, M. Heiblum, O. Zarchin, D. Mahalu, and V. Umansky, Nature 436, 529 (2005).

    Article  ADS  Google Scholar 

  14. I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, and V. Umansky, Phys. Rev. Lett. 96, 016804 (2006).

    Article  ADS  Google Scholar 

  15. I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and V. Umansky, Nature 448, 333 (2007).

    Article  ADS  Google Scholar 

  16. I. Neder, M. Heiblum, D. Mahalu, and V. Umansky, Phys. Rev. Lett. 98, 036803 (2007).

    Article  ADS  Google Scholar 

  17. P. Roulleau, F. Portier, D. C. Glattli, P. Roche, A. Cavanna, G. Faini, U. Gennser, and D. Mailly, Phys. Rev. B 76, 161309 (2007).

    Article  ADS  Google Scholar 

  18. P. Roulleau, F. Portier, and P. Roche, Phys. Rev. Lett. 100, 126802 (2008).

    Article  ADS  Google Scholar 

  19. Y. Zhang, D. T. McClure, E. M. Levenson-Falk, C. M. Marcus, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 79, 241304 (2009).

    Article  ADS  Google Scholar 

  20. E. Weisz, H. K. Choi, M. Heiblum, Y. Gefen, V. Umansky, and D. Mahalu, Phys. Rev. Lett. 109, 250401 (2012).

    Article  ADS  Google Scholar 

  21. H. R. Shea, R. Martel, and Ph. Avouris, Phys. Rev. Lett. 84, 4441 (2000).

    Article  ADS  Google Scholar 

  22. S. Zou, D. Maspoch, Y. Wang, C. A. Mirkin, and G. C. Schatz, Nano Lett. 7, 276 (2007).

    Article  ADS  Google Scholar 

  23. V. Piazza, F. Beltram, W. Wegscheider, C. T. Liang, and M. Pepper, Phys. Rev. B 62, 10630(R) (2000).

    Article  ADS  Google Scholar 

  24. A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Nature 413, 822 (2001).

    Article  ADS  Google Scholar 

  25. U. F. Keyser, C. Fühner, S. Borck, R. J. Haug, M. Bichler, G. Abstreiter, and W. Wegschreider, Phys. Rev. Lett. 90, 196691 (2003).

    Article  ADS  Google Scholar 

  26. M. Büttiker, Y. Imry, and M. Ya. Azbel, Phys. Rev. A 30, 1982 (1984).

    Article  ADS  Google Scholar 

  27. Y. Gefen, Y. Imry, and M. Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984).

    Article  ADS  Google Scholar 

  28. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

    Article  ADS  Google Scholar 

  29. M. V. Moskalets, Low Temp. Phys. 23, 824 (1997).

    Article  ADS  Google Scholar 

  30. Q. Li and C. M. Soukoulis, Phys. Rev. B 33, 7318 (1986).

    Article  ADS  Google Scholar 

  31. J. M. Mao, Y. Huang, and J. M. Zhou, J. Appl. Phys. 73, 1853 (1993).

    Article  ADS  Google Scholar 

  32. E. P. Nakhmedov, H. Feldmann, and R. Oppermann, Eur. Phys. J. B 16, 515 (2000).

    Article  ADS  Google Scholar 

  33. M. A. Kokoreva, V. A. Margulis, and M. A. Pyataev, Physica E 43, 1610 (2011).

    Article  ADS  Google Scholar 

  34. J. M. Kinaret, M. Jonson, R. I. Shekhter, and S. Eggert, Phys. Rev. B 57, 3777 (1998).

    Article  ADS  Google Scholar 

  35. M. Eroms, L. Mayrhofer, and M. Grifoni, Phys. Rev. B 78, 075403 (2008).

    Article  ADS  Google Scholar 

  36. Y. Gefen, Y. Imry, and M. Ya. Azbel, Surf. Sci. 142, 203 (1984).

    Article  ADS  Google Scholar 

  37. E. A. Jagla and C. A. Balseiro, Phys. Rev. Lett. 70, 639 (1993).

    Article  ADS  Google Scholar 

  38. A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, and D. G. Polyakov, Phys. Rev. Lett. 105, 036402 (2010).

    Article  ADS  Google Scholar 

  39. T. Giamarchi, Quantum Physics in One Dimension (Oxford Univ. Press, Oxford, 2004).

    MATH  Google Scholar 

  40. P. M. Shmakov, A. P. Dmitriev, and V. Yu. Kachorovskii, Phys. Rev. B 87, 235417 (2013).

    Article  ADS  Google Scholar 

  41. P. M. Shmakov, A. P. Dmitriev, and V. Yu. Kachorovskii, Phys. Rev. B 85, 075422 (2012).

    Article  ADS  Google Scholar 

  42. K. le Hur, Phys. Rev. B 65, 233314 (2002).

    Article  ADS  Google Scholar 

  43. K. le Hur, Phys. Rev. Lett. 95, 076801 (2005).

    Article  ADS  Google Scholar 

  44. K. le Hur, Phys. Rev. B 74, 165104 (2006).

    Article  ADS  Google Scholar 

  45. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett. 95, 046404 (2005).

    Article  ADS  Google Scholar 

  46. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 75, 085421 (2007).

    Article  ADS  Google Scholar 

  47. D. N. Aristov, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, D. G. Polyakov, and P. Wölfle, Phys. Rev. Lett. 105, 266404 (2010).

    Article  ADS  Google Scholar 

  48. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  ADS  Google Scholar 

  49. Y. M. Galperin, B. L. Altshuler, J. Bergli, and D. V. Shantsev, Phys. Rev. Lett. 96, 097009 (2006).

    Article  ADS  Google Scholar 

  50. J. Schriefl, Y. Makhlin, A. Shnirman, and G. Schön, New J. Phys. 8, 1 (2006).

    Article  ADS  Google Scholar 

  51. C. Neuenhahn, B. Kubala, B. Abel, and F. Marquardt, Phys. Status Solidi B 246, 1018 (2009).

    Article  ADS  Google Scholar 

  52. H. Mathur and A. D. Stone, Phys. Rev. B 44, 10957 (1991).

    Article  ADS  Google Scholar 

  53. A. G. Aronov and Y. B. Lyanda-Geller, Phys. Rev. Lett. 70, 343 (1993).

    Article  ADS  Google Scholar 

  54. T. Z. Qian and Z. B. Su, Phys. Rev. Lett. 72, 2311 (1994).

    Article  ADS  Google Scholar 

  55. J. Nitta, F. E. Meijer, and H. Takayanji, Appl. Phys. Lett. 75, 695 (1999).

    Article  ADS  Google Scholar 

  56. D. Frustaglia and K. Richter, Phys. Rev. B 69, 235310 (2004).

    Article  ADS  Google Scholar 

  57. B. Molnar, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B 69, 155335 (2004).

    Article  ADS  Google Scholar 

  58. U. Aeberland, K. Wakabayashi, and M. Sigrist, Phys. Rev. B 72, 075328 (2005).

    Article  ADS  Google Scholar 

  59. M. Konig, A. Tschetschetkin, E. M. Hankiewicz, J. Sinova, V. Hock, V. Daumer, M. Schafer, C. R. Becker, H. Buhmann, and L. W. Molenkamp, Phys. Rev. Lett. 96, 076804 (2006).

    Article  ADS  Google Scholar 

  60. T. Bergsten, T. Kobayashi, Y. Sekine, and J. Nitta, Phys. Rev. Lett. 97, 196803 (2006).

    Article  ADS  Google Scholar 

  61. R. Citro and F. Romeo, Phys. Rev. B 73, 233304 (2006).

    Article  ADS  Google Scholar 

  62. M. Pletyukhov, V. Gritsev, and N. Pauget, Phys. Rev. B 74, 045301 (2006).

    Article  ADS  Google Scholar 

  63. R. Citro and F. Romeo, Phys. Rev. B 74, 115329 (2006).

    Article  ADS  Google Scholar 

  64. A. A. Kovalev, M. F. Borunda, T. Jungwirth, L. W. Molenkamp, and J. Sinova, Phys. Rev. B 76, 125307 (2007).

    Article  ADS  Google Scholar 

  65. F. Cheng and G. Zhou, J. Phys.: Condens. Matter 19, 136215 (2007).

    ADS  Google Scholar 

  66. F. Romeo, R. Citro, and M. Marinaro, Phys. Rev. B 78, 245309 (2008).

    Article  ADS  Google Scholar 

  67. A. M. Lobos and A. A. Aligia, Phys. Rev. Lett. 100, 016803 (2008).

    Article  ADS  Google Scholar 

  68. M. Pletyukhov and U. Zülike, Phys. Rev. B 77, 193304 (2008).

    Article  ADS  Google Scholar 

  69. V. Moldoveanu and B. Tanatar, Phys. Rev. B 81, 035326 (2010).

    Article  ADS  Google Scholar 

  70. A. Aharony, Y. Tokura, G. Z. Cohen, O. Entin-Wohlman, and S. Katsumoto, Phys. Rev. B 84, 035323 (2011).

    Article  ADS  Google Scholar 

  71. C. X. Liu, J. C. Budisch, P. Recher, and B. Trauzettel, Phys. Rev. B 83, 035407 (2011).

    Article  ADS  Google Scholar 

  72. P. Michette and P. Recher, Phys. Rev. B 83, 125420 (2011).

    Article  ADS  Google Scholar 

  73. Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  74. H. Mathur and A. D. Stone, Phys. Rev. Lett. 68, 2964 (1992).

    Article  ADS  Google Scholar 

  75. M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Kachorovskii.

Additional information

See the supplemental material for this paper on the JETP Letters site www.jetpletters.ac.ru. The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.P., Gornyi, I.V., Kachorovskii, V.Y. et al. High-temperature Aharonov-Bohm effect in transport through a single-channel quantum ring. Jetp Lett. 100, 839–851 (2015). https://doi.org/10.1134/S0021364014240059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014240059

Keywords

Navigation