Skip to main content
Log in

Novel type of superlattices based on gapless graphene with the alternating Fermi velocity

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We study a novel type of graphene-based superlattices formed owing to a periodic modulation of the Fermi surface. Such a modulation is possible for graphene deposited on a striped substrate made of materials with substantially different values of the dc permittivity. Similar superlattices appear also in graphene sheets applied over substrates with a periodic array of parallel grooves. We suggest a model describing such superlattices. Using the transfer-matrix technique, we determine the dispersion relation and calculate the energy spectrum of these superlattices. We also analyze at a qualitative level the current-voltage characteristics of the system under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Isacsson, L. M. Jonsson, J. M. Kinaret, and M. Jonson, Phys. Rev. B 77, 035423 (2008).

    Article  ADS  Google Scholar 

  2. C. Bai and X. Zhang, Phys. Rev. B 76, 075430 (2007).

    Article  ADS  Google Scholar 

  3. M. R. Masir, P. Vasilopoulos, A. Matulis, and F. M. Peeters, Phys. Rev. B 77, 235443 (2008).

    Article  ADS  Google Scholar 

  4. P. V. Ratnikov, JETP Lett. 90, 469 (2009).

    Article  ADS  Google Scholar 

  5. S. E. Savel’ev and A. S. Alexandrov, Phys. Rev. B 84, 035428 (2011).

    Article  ADS  Google Scholar 

  6. J.-H. Lee and J. C. Grossman, Phys. Rev. B 84, 113413 (2011).

    Article  ADS  Google Scholar 

  7. V. Krueckl and K. Richter, Phys. Rev. B 85, 115433 (2012).

    Article  ADS  Google Scholar 

  8. G. Pal, W. Apel, and L. Schweitzer, Phys. Rev. B 85, 235457 (2012).

    Article  ADS  Google Scholar 

  9. P. B. Sorokin and L. A. Chernozatonskii, Phys. Usp. 56, 105 (2013).

    Article  ADS  Google Scholar 

  10. G. M. Maksimova, E. S. Azarova, A. V. Telezhnikov, and V. A. Burdov, Phys. Rev. B 86, 205422 (2012).

    Article  ADS  Google Scholar 

  11. A. V. Kolesnikov, R. Lipperheide, A. P. Silin, and V. Wille, Europhys. Lett. 43, 331 (1998).

    Article  ADS  Google Scholar 

  12. E. A. Andryushin, A. P. Silin, and S. A. Vereshchagin, Phys. Low-Dim. Struct. 314, 79 (2000).

    Google Scholar 

  13. P. V. Ratnikov and A. P. Silin, Phys. Solid State 52, 1763 (2010).

    Article  ADS  Google Scholar 

  14. P. V. Ratnikov and A. P. Silin, J. Exp. Theor. Phys. 114, 512 (2012).

    Article  ADS  Google Scholar 

  15. C. Hwang, D. A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, Sci. Rep. 2, 590 (2012).

    Article  ADS  Google Scholar 

  16. P. V. Ratnikov, JETP Lett. 87, 292 (2008).

    Article  ADS  Google Scholar 

  17. A. V. Kolesnikov and A. P. Silin, J. Exp. Theor. Phys. 82, 1145 (1996).

    ADS  Google Scholar 

  18. J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B 424, 595 (1994).

    Article  ADS  Google Scholar 

  19. J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 59, 2474 (1999).

    Article  ADS  Google Scholar 

  20. S. Das Sarma, E. H. Hwang, and W.-K. Tse, Phys. Rev. B 75, 121406(R) (2007).

    Article  ADS  Google Scholar 

  21. M. S. Foster and I. L. Aleiner, Phys. Rev. B 77, 195413 (2008).

    Article  ADS  Google Scholar 

  22. F. de Juan, A. G. Grushin, and M. A. H. Vozmediano, Phys. Rev. B 82, 125409 (2010).

    Article  ADS  Google Scholar 

  23. A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Solid State Commun. 143, 63 (2007).

    Article  ADS  Google Scholar 

  24. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nature Phys. 4, 532 (2008).

    Article  Google Scholar 

  25. G. Li, A. Luican, and E. Y. Andrei, Phys. Rev. Lett. 102, 176804 (2009).

    Article  ADS  Google Scholar 

  26. D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, Nature Phys. 7, 701 (2011).

    Article  ADS  Google Scholar 

  27. J. Chae, S. Jung, A. F. Young, C. R. Dean, L. Wang, Yu. Gao, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, Ph. Kim, N. B. Zhitenev, and J. A. Stroscio, Phys. Rev. Lett. 109, 116802 (2012).

    Article  ADS  Google Scholar 

  28. M. R. Geller and W. Kohn, Phys. Rev. Lett. 20, 3103 (1993).

    Article  ADS  Google Scholar 

  29. A. V. Kolesnikov and A. P. Silin, Phys. Rev. B 95, 7596 (1999).

    Article  ADS  Google Scholar 

  30. J. Callaway, Energy Band Theory (Academic, New York, 1964; Mir, Moscow, 1969).

    MATH  Google Scholar 

  31. A. P. Silin and S. V. Shubenkov, Phys. Solid State 40, 1223 (1998).

    Article  ADS  Google Scholar 

  32. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  33. N. Vandecasteele, A. Barreiro, M. Lazzeri, A. Bachtold, and F. Mauri, Phys. Rev. B 82, 045416 (2010).

    Article  ADS  Google Scholar 

  34. A. P. Silin, Sov. Phys. Usp. 28, 972 (1985).

    Article  ADS  Google Scholar 

  35. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Ratnikov.

Additional information

Original Russian Text © P.V. Ratnikov, A.P. Silin, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 5, pp. 349–356.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratnikov, P.V., Silin, A.P. Novel type of superlattices based on gapless graphene with the alternating Fermi velocity. Jetp Lett. 100, 311–318 (2014). https://doi.org/10.1134/S0021364014170123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014170123

Keywords

Navigation