Advertisement

JETP Letters

, Volume 100, Issue 5, pp 328–335 | Cite as

Study of the structure of a superconducting state of Co-doped BaFe2As2 multiband compounds

  • A. E. KarakozovEmail author
  • B. P. Gorshunov
  • Ya. G. Ponomarev
  • A. S. Prokhorov
  • V. S. Nozdrin
  • M. V. Magnitskaya
  • E. S. Zhukova
  • K. Iida
  • M. Dressel
  • S. Zapf
  • S. Haindl
Condensed Matter
  • 79 Downloads

Abstract

The terahertz and infrared spectra of the complex dynamic conductivity, as well as the temperature dependences of the density of a superconducting condensate and the electronic specific heat of superconducting Ba(Fe1 − x Co x )2As2 compounds, have been analyzed within a Bardeen-Cooper-Schrieffer-like model of a multiband superconductor with strong coupling. It has been shown that the superconducting state of these compounds is determined by three (one electronic and two hole) weakly interacting condensates. The order parameters of the condensates are: Δ1 ≈ 15 cm−1, Δ2 ≈ 21 cm−1, and Δ3 ≈ 30–35 cm−1. The results significantly refine the existing notions on the structure of the superconducting state of Co-doped BaFe2As2 multiband compounds.

Keywords

JETP Letter Superconducting State Optical Conductivity Band Model BaFe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, and N. L. Wang, Nature 457, 565 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    D. J. Singh, Physica C 469, 418 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, Phys. Rev. B 79, 224511 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    C. Ren, Z.-S. Wang, H.-Q. Luo, H. Yang, L. Shan, and H.-H. Wen, Phys. Rev. Lett. 101, 257006 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    P. Samueli, Z. Pribylová, P. Szabó, G. Pristáš, S. L. Bud’ko, and P. C. Canfield, Physica C 469, 507 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    Yi. Yin, M. Zech, T. L. Williams, X. F. Wang, G. Wu, X. H. Chen, and J. E. Hoffman, Phys. Rev. Lett. 102, 097002 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    T. J. Williams, A. A. Aczel, E. Baggio-Saitovich, S. L. Bud’ko, P. C. Canfield, J. P. Carlo, T. Goko, J. Munevar, N. Ni, Y. J. Uemura, W. Yu, and G. M. Luke, Phys. Rev. B 80, 094501 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    R. T. Gordon, N. Ni, C. Martin, M. A. Tanatar, M. D. Vannette, H. Kim, G. D. Samolyuk, J. Schmalian, S. Nandi, A. Kreyssig, A. I. Goldman, J. Q. Yan, S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. Lett. 102, 127004 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Machida, K. Tomokuni, T. Isono, K. Izawa, Y. Nakajima, and T. Tamegai, J. Phys. Soc. Jpn. 78, 073705 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    O. V. Dolgov, I. I. Mazin, D. Parker, and A. A. Golubov, Phys. Rev. B 79, 060502(R) (2009).ADSCrossRefGoogle Scholar
  13. 13.
    E. Schachinger and J. P. Carbotte, Phys. Rev. B 80, 174526 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    V. Mishra, G. Boyd, S. Graser, T. Maier, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B 79, 094512 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    J. P. Carbotte and E. Schachinger, Phys. Rev. B 81, 104510 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    A. Charnukha, O. V. Dolgov, A. A. Golubov, Y. Matiks, D. L. Sun, C. T. Lin, B. Keimer, and A. V. Boris, Phys. Rev. B 84, 174511 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    R. M. Fernandes, M. G. Vavilov, and A. V. Chubukov, Phys. Rev. B 85, 140512(R) (2012).ADSCrossRefGoogle Scholar
  18. 18.
    P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    G. A. Ummarino, M. Tortello, D. Daghero, and R. S. Gonnelli, Phys. Rev. B 80, 172503 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    L. Benfatto, E. Cappelluti, and C. Castellani, Phys. Rev. B 80, 214522 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    P. Popovich, A. V. Boris, O. V. Dolgov, A. A. Golubov, D. L. Sun, C. T. Lin, R. K. Kremer, and B. Keimer, Phys. Rev. Lett. 105, 027003 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    M. L. Teague, G. K. Drayna, G. P. Lockhart, P. Cheng, B. Shen, H.-H. Wen, and N.-C. Yeh, Phys. Rev. Lett. 106, 087004 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    K. Terashima, Y. Sekiba, J. H. Bowen, K. Nakayama, T. Kawahara, T. Sato, P. Richard, Y.-M. Xu, L. J. Li, G. H. Cao, Z.-A. Xu, H. Ding, and T. Takahashi, Proc. Natl. Acad. Soc. 106, 7330 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    K. W. Kim, M. Rössle, A. Dubroka, V. K. Malik, T. Wolf, and C. Bernhard, Phys. Rev. B 81, 214508 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    E. van Heumen, Y. Huang, S. de Jong, A. B. Kuzmenko, M. S. Golden, and D. van der Marel, Europhys. Lett. 90, 37005 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    D. Wu, N. Barišić, M. Dressel, G. H. Cao, Z. A. Xu, J. P. Carbotte, and E. Schachinger, Phys. Rev. B 82, 184527 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    R. P. S. M. Lobo, Y. M. Dai, U. Nagel, T. Rööm, J. P. Carbotte, T. Timusk, A. Forget, and D. Colson, Phys. Rev. B 82, 100506 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    T. Fischer, A. V. Pronin, J. Wosnitza, K. Iida, F. Kurth, S. Haindl, L. Schultz, B. Holzapfel, and E. Schachinger, Phys. Rev. B 82, 224507 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    B. Gorshunov, D. Wu, A. A. Voronkov, P. Kallina, K. Iida, S. Haindl, F. Kurth, L. Schultz, B. Holzapfel, and M. Dressel, Phys. Rev. B 81, 060509(R) (2010).ADSCrossRefGoogle Scholar
  30. 30.
    Yu. A. Aleshchenko, A. V. Muratov, V. M. Pudalov, E. S. Zhukova, B. P. Gorshunov, F. Kurt, and K. Aida, JETP Lett. 94, 719 (2011).CrossRefGoogle Scholar
  31. 31.
    E. G. Maksimov, A. E. Karakozov, B. P. Gorshunov, A. S. Prokhorov, A. A. Voronkov, E. S. Zhukova, V. S. Nozdrin, S. S. Zhukov, D. Wu, M. Dressel, S. Haindl, K. Iida, and B. Holzapfel, Phys. Rev. B 83, 140502 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    V. Brouet, M. Marsi, B. Mansart, A. Nicolaou, A. TalebIbrahimi, P. LeFévre, F. Bertran, F. Rullier-Albenque, A. Forget, and D. Colson, Phys. Rev. B 80, 165115 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    H. Padamsee, J. E. Neighbor, and C. A. Shiffman, J. Low Temp. Phys. 12, 387 (1973).ADSCrossRefGoogle Scholar
  34. 34.
    F. Hardy, T. Wolf, R. A. Fisher, R. Eder, P. Schweiss, P. Adelmann, H. v. Löhneysen, and C. Meingast, Phys. Rev. B 81, 060501 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    K. Iida, J. Hanisch, R. Hühne, F. Kurth, M. Kidszun, S. Haindl, J. Werner, L. Schultz, and B. Holzapfel, Appl. Phys. Lett. 95, 192501 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    A. A. Golubov, A. Brinkman, O. V. Dolgov, J. Kortus, and O. Jepsen, Phys. Rev. B 66, 054524 (2002).ADSCrossRefGoogle Scholar
  37. 37.
    E. G. Maksimov, A. E. Karakozov, B. P. Gorshunov, E. S. Zhukova, Ya. G. Ponomarev, and M. Dressel, Phys. Rev. B 84, 174504 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    S. Haindl, M. Kidzsun, S. Oswald, C. Hess, B. Büchner, S. Kölling, L. Wilde, T. Thersleff, V. V. Yurchenko, M. Jourdan, H. Hiramatsu, and H. Hosono, Rep. Prog. Phys. 77, 046502 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    High-Temperature Superconductivity, Ed. by V. L. Ginzburg and D. A. Kirzhnits (Nauka, Moscow, 1977; Springer, 1982).Google Scholar
  40. 40.
    A. E. Karakozov, E. G. Maksimov, and A. A. Mikhailovskii, Sov. Phys. JETP 75, 70 (1992).Google Scholar
  41. 41.
    A. E. Karakozov, E. G. Maksimov, and Ya. G. Ponomarev, JETP Lett. 91, 24 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (GIFML, Moscow, 1962; Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar
  43. 43.
    S. B. Nam, Phys. Rev. 156, 470 (1967).ADSCrossRefGoogle Scholar
  44. 44.
    E. G. Maksimov, M. L. Kulic, and O. V. Dolgov, Adv. Condens. Matter Phys. 2010, 1 (2010).CrossRefGoogle Scholar
  45. 45.
    S. V. Borisenko and D. V. Evtushinskii, private commun.Google Scholar
  46. 46.
    P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).ADSCrossRefGoogle Scholar
  47. 47.
    G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in Superconductivity, Ed. by R. D. Parks (New York, 1969).Google Scholar
  48. 48.
    F. Hardy, P. Burger, T. Wolf, R. A. Fisher, P. Schweiss, P. Adelmann, R. Heid, R. Fromknecht, R. Eder, D. Ernst, H. v. Löhneysen, and C. Meingast, Europhys. Lett. 91, 47008 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. E. Karakozov
    • 1
    Email author
  • B. P. Gorshunov
    • 2
    • 3
    • 4
  • Ya. G. Ponomarev
    • 5
  • A. S. Prokhorov
    • 2
    • 3
  • V. S. Nozdrin
    • 3
  • M. V. Magnitskaya
    • 1
  • E. S. Zhukova
    • 2
    • 3
    • 4
  • K. Iida
    • 6
  • M. Dressel
    • 4
  • S. Zapf
    • 4
  • S. Haindl
    • 7
    • 8
  1. 1.Institute for High Pressure PhysicsRussian Academy of SciencesTroitskRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  4. 4.1. Physikalisches InstitutUniversität StuttgartStuttgartGermany
  5. 5.Faculty of PhysicsMoscow State UniversityMoscowRussia
  6. 6.Institute for Metallic MaterialsDresdenGermany
  7. 7.Physikalisches Institut, Experimentalphysik IIUniversity of TübingenTübingenGermany
  8. 8.Institute for Solid State ResearchLeibniz Institute for Solid State and Materials Research DresdenDresdenGermany

Personalised recommendations