Abstract
We propose an explanation for the appearance of superconductivity at the interfaces of graphite with Bernal stacking order. A network of line defects with flat bands appears at the interfaces between two slightly twisted graphite structures. Due to the flat band the probability to find high temperature superconductivity at these quasi one-dimensional corridors is strongly enhanced. When the network of superconducting lines is dense it becomes effectively two-dimensional. The model provides an explanation for several reports on the observation of superconductivity up to room temperature in different oriented graphite samples, graphite powders as well as graphite-composite samples published in the past.
This is a preview of subscription content, access via your institution.
References
M. Inagaki, New Carbons: Control of Structure and Functions (Elsevier, Amsterdam, 2000).
J. Barzola-Quiquia, J.-L. Yao, P. Rödiger, K. Schindler, and P. Esquinazi, Phys. Status Solidi A 205, 2924 (2008).
A. Ballestar, J. Barzola-Quiquia, T. Scheike, and P. Esquinazi, New J. Phys. 15, 023024 (2013).
T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, and A. Setzer, Adv. Mater. 24, 5826 (2012).
T. Scheike, P. Esquinazi, A. Setzer, and W. Böhlmann, Carbon 59, 140 (2013).
A. Ballestar, PhD (Univ. of Leipzig, 2014); the high resolution TEM pictures were provided by Dr. E. Pipple (Max Planck Inst. Microstructure Physics, Halle, Germany); the lower resolution TEM picture was provided by Dr. W. Böhlmann at the University of Leipzig.
J. H. Warner, M. H. Römmeli, T. Gemming, B. Büchner, and G. A. D. Briggs, Nano Lett. 9, 102 (2009).
J. Burgers, Proc. Phys. Soc. 52, 23 (1940).
W. L. Bragg, Proc. Phys. Soc. 52, 105 (1940).
W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).
J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown, J. Park, D. A. Muller, and P. L. McEuen, Proc. Natl. Acad. Sci. 110, 11256 (2013).
P. San-Jose and E. Prada, Phys. Rev. B 88, 121408(R) (2013).
X. Gong and E. J. Mele, Phys. Rev. B 89, 121415 (2014).
R. Bistritzer and A. MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011).
I. Brihuega, P. Mallet, H. González-Herrero, G. T. de Laissardière, M. M. Ugeda, L. Magaud, J. M. Gómez-Rodríguez, F. Ynduráin, and J.-Y. Veuillen, Phys. Rev. Lett. 109, 196802 (2012).
M. Flores, E. Cisternas, J. Correa, and P. Vargas, Chem. Phys. 423, 49 (2013).
L.-J. Yin, J.-B. Qiao, W.-X. Wang, Z.-D. Chu, K. F. Zhang, R.-F. Dou, C. L. Gao, J.-F. Jia, J.-C. Nie, and L. He, Phys. Rev. B 89, 205410 (2014).
A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
G. E. Volovik, Quantum Phase Transitions from Topology in Momentum Space, Springer Lecture Notes in Physics, Vol. 718 (Springer, Berlin, 2007), p. 31.
J. W. McClure, Phys. Rev. 108, 612 (1957).
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
Y. Kopnin and M. Salomaa, Phys. Rev. B 44, 9667 (1991).
G. Volovik, JETP Lett. 59, 830 (1994).
G. Volovik, JETP Lett. 70, 609 (1999).
L. Feng, X. Lin, L. Meng, J.-C. Nie, J. Ni, and L. He, Appl. Phys. Lett. 101, 113113 (2012).
T. Heikkilä, N. B. Kopnin, and G. Volovik, JETP Lett. 94, 233 (2011).
N. B. Kopnin, M. Ijäs, A. Harju, and T. T. Heikkilä, Phys. Rev. B 87, 140503 (2013).
E. Tang and L. Fu, arXiv:1403.7523 (2014).
F. de Juan, J. L. Mañes, and M. A. H. Vozmediano, Phys. Rev. B 87, 165131 (2013).
V. Khodel and V. Shaginyan, JETP Lett. 51, 553 (1990).
N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B 83, 220503 (2011).
Y. Kopaev, Sov. Phys. JETP 31, 544 (1970).
Y. Kopaev and A. Rusinov, Phys. Lett. A 121, 300 (1987).
A. Shashkin, V. Dolgopolov, J. Clark, V. Shaginyan, M. Zverev, and V. Khodel, arXiv:1404.7465 (2014).
D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).
K. Antonowicz, Nature 247, 358 (1974).
Y. Kopelevich, P. Esquinazi, J. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000).
R. R. da Silva, J. H. S. Torres, and Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001).
H.-P. Yang, H.-H. Wen, Z.-W. Zhao, and S.-L. Li, Chin. Phys. Lett. 18, 1648 (2001).
S. Moehlecke, P. C. Ho, and M. B. Maple, Philos. Mag. B 82, 1335 (2002).
I. Felner and Y. Kopelevich, Phys. Rev. B 79, 233409 (2009).
I. Felner, Mater. Res. Express 1, 016001 (2014).
P. Esquinazi, Papers Phys. 5, 050007 (2013).
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Esquinazi, P., Heikkilä, T.T., Lysogorskiy, Y.V. et al. On the superconductivity of graphite interfaces. Jetp Lett. 100, 336–339 (2014). https://doi.org/10.1134/S0021364014170056
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0021364014170056
Keywords
- Soliton
- JETP Letter
- Edge Dislocation
- Twist Angle
- Highly Orient Pyrolytic Graphite