Skip to main content

On the superconductivity of graphite interfaces

Abstract

We propose an explanation for the appearance of superconductivity at the interfaces of graphite with Bernal stacking order. A network of line defects with flat bands appears at the interfaces between two slightly twisted graphite structures. Due to the flat band the probability to find high temperature superconductivity at these quasi one-dimensional corridors is strongly enhanced. When the network of superconducting lines is dense it becomes effectively two-dimensional. The model provides an explanation for several reports on the observation of superconductivity up to room temperature in different oriented graphite samples, graphite powders as well as graphite-composite samples published in the past.

This is a preview of subscription content, access via your institution.

References

  1. M. Inagaki, New Carbons: Control of Structure and Functions (Elsevier, Amsterdam, 2000).

    Google Scholar 

  2. J. Barzola-Quiquia, J.-L. Yao, P. Rödiger, K. Schindler, and P. Esquinazi, Phys. Status Solidi A 205, 2924 (2008).

    Article  ADS  Google Scholar 

  3. A. Ballestar, J. Barzola-Quiquia, T. Scheike, and P. Esquinazi, New J. Phys. 15, 023024 (2013).

    Article  ADS  Google Scholar 

  4. T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, and A. Setzer, Adv. Mater. 24, 5826 (2012).

    Article  Google Scholar 

  5. T. Scheike, P. Esquinazi, A. Setzer, and W. Böhlmann, Carbon 59, 140 (2013).

    Article  Google Scholar 

  6. A. Ballestar, PhD (Univ. of Leipzig, 2014); the high resolution TEM pictures were provided by Dr. E. Pipple (Max Planck Inst. Microstructure Physics, Halle, Germany); the lower resolution TEM picture was provided by Dr. W. Böhlmann at the University of Leipzig.

  7. J. H. Warner, M. H. Römmeli, T. Gemming, B. Büchner, and G. A. D. Briggs, Nano Lett. 9, 102 (2009).

    Article  ADS  Google Scholar 

  8. J. Burgers, Proc. Phys. Soc. 52, 23 (1940).

    Article  ADS  Google Scholar 

  9. W. L. Bragg, Proc. Phys. Soc. 52, 105 (1940).

    Article  ADS  Google Scholar 

  10. W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  ADS  MATH  Google Scholar 

  11. J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown, J. Park, D. A. Muller, and P. L. McEuen, Proc. Natl. Acad. Sci. 110, 11256 (2013).

    Article  ADS  Google Scholar 

  12. P. San-Jose and E. Prada, Phys. Rev. B 88, 121408(R) (2013).

    Article  ADS  Google Scholar 

  13. X. Gong and E. J. Mele, Phys. Rev. B 89, 121415 (2014).

    Article  ADS  Google Scholar 

  14. R. Bistritzer and A. MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011).

    Article  Google Scholar 

  15. I. Brihuega, P. Mallet, H. González-Herrero, G. T. de Laissardière, M. M. Ugeda, L. Magaud, J. M. Gómez-Rodríguez, F. Ynduráin, and J.-Y. Veuillen, Phys. Rev. Lett. 109, 196802 (2012).

    Article  ADS  Google Scholar 

  16. M. Flores, E. Cisternas, J. Correa, and P. Vargas, Chem. Phys. 423, 49 (2013).

    Article  ADS  Google Scholar 

  17. L.-J. Yin, J.-B. Qiao, W.-X. Wang, Z.-D. Chu, K. F. Zhang, R.-F. Dou, C. L. Gao, J.-F. Jia, J.-C. Nie, and L. He, Phys. Rev. B 89, 205410 (2014).

    Article  ADS  Google Scholar 

  18. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  19. G. E. Volovik, Quantum Phase Transitions from Topology in Momentum Space, Springer Lecture Notes in Physics, Vol. 718 (Springer, Berlin, 2007), p. 31.

    Google Scholar 

  20. J. W. McClure, Phys. Rev. 108, 612 (1957).

    Article  ADS  Google Scholar 

  21. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  22. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  23. S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).

    Article  ADS  Google Scholar 

  24. Y. Kopnin and M. Salomaa, Phys. Rev. B 44, 9667 (1991).

    Article  ADS  Google Scholar 

  25. G. Volovik, JETP Lett. 59, 830 (1994).

    ADS  Google Scholar 

  26. G. Volovik, JETP Lett. 70, 609 (1999).

    Article  ADS  Google Scholar 

  27. L. Feng, X. Lin, L. Meng, J.-C. Nie, J. Ni, and L. He, Appl. Phys. Lett. 101, 113113 (2012).

    Article  ADS  Google Scholar 

  28. T. Heikkilä, N. B. Kopnin, and G. Volovik, JETP Lett. 94, 233 (2011).

    Article  ADS  Google Scholar 

  29. N. B. Kopnin, M. Ijäs, A. Harju, and T. T. Heikkilä, Phys. Rev. B 87, 140503 (2013).

    Article  ADS  Google Scholar 

  30. E. Tang and L. Fu, arXiv:1403.7523 (2014).

    Google Scholar 

  31. F. de Juan, J. L. Mañes, and M. A. H. Vozmediano, Phys. Rev. B 87, 165131 (2013).

    Article  ADS  Google Scholar 

  32. V. Khodel and V. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  33. N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B 83, 220503 (2011).

    Article  ADS  Google Scholar 

  34. Y. Kopaev, Sov. Phys. JETP 31, 544 (1970).

    ADS  Google Scholar 

  35. Y. Kopaev and A. Rusinov, Phys. Lett. A 121, 300 (1987).

    Article  ADS  Google Scholar 

  36. A. Shashkin, V. Dolgopolov, J. Clark, V. Shaginyan, M. Zverev, and V. Khodel, arXiv:1404.7465 (2014).

  37. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).

    Article  ADS  Google Scholar 

  38. K. Antonowicz, Nature 247, 358 (1974).

    Article  ADS  Google Scholar 

  39. Y. Kopelevich, P. Esquinazi, J. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000).

    Article  ADS  Google Scholar 

  40. R. R. da Silva, J. H. S. Torres, and Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001).

    Article  ADS  Google Scholar 

  41. H.-P. Yang, H.-H. Wen, Z.-W. Zhao, and S.-L. Li, Chin. Phys. Lett. 18, 1648 (2001).

    Article  ADS  Google Scholar 

  42. S. Moehlecke, P. C. Ho, and M. B. Maple, Philos. Mag. B 82, 1335 (2002).

    ADS  Google Scholar 

  43. I. Felner and Y. Kopelevich, Phys. Rev. B 79, 233409 (2009).

    Article  ADS  Google Scholar 

  44. I. Felner, Mater. Res. Express 1, 016001 (2014).

    Article  ADS  Google Scholar 

  45. P. Esquinazi, Papers Phys. 5, 050007 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Esquinazi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esquinazi, P., Heikkilä, T.T., Lysogorskiy, Y.V. et al. On the superconductivity of graphite interfaces. Jetp Lett. 100, 336–339 (2014). https://doi.org/10.1134/S0021364014170056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014170056

Keywords

  • Soliton
  • JETP Letter
  • Edge Dislocation
  • Twist Angle
  • Highly Orient Pyrolytic Graphite