JETP Letters

, Volume 100, Issue 1, pp 4–10 | Cite as

Formation of nanojets and nanodroplets by an ultrashort laser pulse at focusing in the diffraction limit

  • N. A. Inogamov
  • V. V. Zhakhovskii
Optics and Laser Physics


A new model has been developed and calculations have been performed for the formation of nanodroplets after action of an ultrashort laser pulse on a thin (10–100 nm) gold film deposited on a glass substrate. The action of a laser results in the melting of the film in the region of a laser spot and in its thermomechanical separation from the substrate. The separated film acquires a dome shape because of a decrease in the temperature in the direction from the center of the laser spot. This theoretical model provides the explanation of the formation of nanodroplets. It has been established that, first, the separation speed of a gold film from glass decreases sharply because the acoustic impedance of gold is much larger than that of glass. Second, nanodroplets are formed owing to the capillary focusing of the substance, which is manifested in the appearance of the drag component directed toward the axis of symmetry of the dome. The surface tension becomes dynamically significant because of the indicated sharp decrease in the separation speed from glass and of the smallness of the diameter of the focal spot (D ∼ 1 μm), which is determined by the diffraction limit of optical radiation.


JETP Letter Gold Film Ultrashort Laser Pulse Molecular Dynamic Calculation Lagrange Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, Opt. Express 20, 24864 (2012).CrossRefADSGoogle Scholar
  2. 2.
    Y. Nakata, T. Okada, and M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003).CrossRefADSGoogle Scholar
  3. 3.
    F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).CrossRefADSGoogle Scholar
  4. 4.
    A. I. Kuznetsov, J. Koch, and B. N. Chichkov, Appl. Phys. A 94, 221 (2009).CrossRefADSGoogle Scholar
  5. 5.
    Y. Nakata, N. Miyanaga, and T. Okada, Appl. Surf. Sci. 253, 6555 (2007).CrossRefADSGoogle Scholar
  6. 6.
    D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, Appl. Phys. A 92, 791 (2008).CrossRefADSGoogle Scholar
  7. 7.
    D. S. Ivanov, Zh. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, J. Appl. Phys. 107, 013519 (2010).CrossRefADSGoogle Scholar
  8. 8.
    D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, Appl. Phys. A 111, 675 (2013).CrossRefADSGoogle Scholar
  9. 9.
    Y. P. Meshcheryakov and N. M. Bulgakova, Appl. Phys. A 82, 363 (2006).CrossRefADSGoogle Scholar
  10. 10.
    E. B. Webb III and G. S. Grest, Phys. Rev. Lett. 86, 2066 (2001).CrossRefADSGoogle Scholar
  11. 11.
    B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B 82, 064113 (2010).CrossRefADSGoogle Scholar
  12. 12.
    S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, Sov. Phys. JETP 39, 375 (1974).ADSGoogle Scholar
  13. 13.
    A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor Francis, London, 1993).Google Scholar
  14. 14.
  15. 15.
    V. V. Zhakhovskii, N. A. Inogamov, Yu. V. Petrov, S. I. Ashitkov, and K. Nishihara, Appl. Surf. Sci. 255, 9592 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.All-Russia Research Institute of AutomaticsMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations