Skip to main content
Log in

Emergent Weyl fermions and the origin of i = \(\sqrt { - 1} \) in quantum mechanics

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Conventional quantum mechanics is described in terms of complex numbers. However, all physical quantities are real. This indicates that the appearance of complex numbers in quantum mechanics may be the emergent phenomenon; i.e., complex numbers appear in the low energy description of the underlined high energy theory. We suggest a possible explanation of how this may occur. Namely, we consider the system of multicomponent Majorana fermions. There is a natural description of this system in terms of real numbers only. In the vicinity of the topologically protected Fermi point this system is described by the effective low energy theory with Weyl fermions. These Weyl fermions interact with the emergent gauge field and the emergent gravitational field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  2. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  3. C. D. Froggatt and H. B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991).

    Book  Google Scholar 

  4. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  5. P. Ho ava, Phys. Rev. Lett. 95, 016405 (2005).

    Article  Google Scholar 

  6. G. E. Volovik, JETP Lett. 44, 498 (1986).

    ADS  Google Scholar 

  7. G. E. Volovik, Lecture Notes in Phys. 870, 343 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32, 699 (1971).

    ADS  Google Scholar 

  9. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).

    Article  ADS  Google Scholar 

  10. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011); A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  11. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  12. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner, and R. J. Cava, arXiv:1309.7978 [cond-mat.mes-hall].

  13. G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  14. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  15. X.-L. Qi and Sh.-Ch. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  16. M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. E. Volovik, JETP Lett. 90, 398 (2009); arXiv:0907.; arXiv:0907.5389.

    Article  ADS  Google Scholar 

  18. J. von Neumann und E. Wigner, Z. Phys. 30, 465 (1929); J. von Neumann and E. P. Wigner, Phys. Zeit. 30, 467 (1929).

    MATH  Google Scholar 

  19. S. P. Novikov, Sov. Math. Dokl. 23, 298 (1981).

    MATH  Google Scholar 

  20. J. E. Avron, R. Seiler, and B. Simon, Phys. Rev. Lett. 51, 51 (1983).

    Article  ADS  Google Scholar 

  21. G. E. Volovik, JETP Lett. 46, 98 (1987).

    ADS  Google Scholar 

  22. K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979); Yu. N. Obukhov and J. G. Pereira, Phys. Rev. D 67, 044016 (2003); V. C. de Andrade and J. G. Pereira, Phys. Rev. D 56, 4689 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep. 496, 109 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. L. Manes, F. de Juan, M. Sturla, and M. A. H. Vozmediano, Phys. Rev. B 88, 155405 (2013); arXiv:1308.; arXiv:1308.1595.

    Article  ADS  Google Scholar 

  25. G. E. Volovik and M. A. Zubkov, arXiv:1305.4665 [cond-mat.mes-hall].

  26. C. N. Yang, in Proceedings of the International Conference on Theoretical Physics, TH-2002, Paris, July 22–27, 2002, Ed. by D. Iagolnitzer, V. Rivasseau, and J. Zinn-Justin (Birkhäuser Verlag, Basel, Boston, Berlin, 2004); Ann. Henri Poincare 4 (2), S9 (2003).

  27. S. L. Adler, Quantum Theory as an Emergent Phenemon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  28. G. E. Volovik and M. A. Zubkov, arXiv:1402.5700.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E., Zubkov, M.A. Emergent Weyl fermions and the origin of i = \(\sqrt { - 1} \) in quantum mechanics. Jetp Lett. 99, 481–486 (2014). https://doi.org/10.1134/S0021364014080141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014080141

Keywords

Navigation