Skip to main content
Log in

Enhancing of the critical temperature of an in-plane FFLO state in heterostructures by the orbital effect of the magnetic field

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It is well-known that the orbital effect of the magnetic field suppresses superconducting T c . We show that for a system, which is in the Larkin-Ovchinnikov-Fulde-Ferrell (FFLO) state at zero external magnetic field, the orbital effect of an applied magnetic field can lead to the enhancement of the critical temperature higher than T c at zero field. We concentrate on two systems, where the in-plane FFLO state was predicted recently. These are equilibrium S/F bilayers and S/N bilayers under nonequilibrium quasiparticle distribution. However, it is suggested that such an effect can take place for any plane superconducting system, which is in the in-plane FFLO state (or is close enough to it) at zero applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Lebed, JETP Lett. 44, 114 (1986); L. I. Burlachkov, L. P. Gor’kov, and A. G. Lebed, Europhys. Lett. 4, 941 (1987).

    ADS  Google Scholar 

  2. A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).

    Article  ADS  Google Scholar 

  3. A. G. Lebed, Phys. Rev. B 59, R721 (1999).

    Article  ADS  Google Scholar 

  4. A. G. Lebed, K. Machida, and M. Ozaki, Phys. Rev. B 62, R795 (2000).

    Article  ADS  Google Scholar 

  5. M. Rasolt, Phys. Rev. Lett. 58, 1482 (1987); Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. Lett. 63, 2425 (1989).

    Article  ADS  Google Scholar 

  6. A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).

    MathSciNet  Google Scholar 

  7. P. Fulde and R. A. Ferrel, Phys. Rev. A 135, 550 (1964).

    Article  ADS  Google Scholar 

  8. A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003).

    Article  ADS  Google Scholar 

  9. C. Capan, A. Bianchi, R. Movshovich, A. D. Christianson, A. Malinowski, M. F. Hundley, A. Lacerda, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. B 70, 134513 (2004).

    Article  ADS  Google Scholar 

  10. S. Uji, H. Shinagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayash, H. Tanaka, and H. Kobayash, Nature (London) 410, 908 (2001).

    Article  ADS  Google Scholar 

  11. J. Singleton, J. A. Symington, M.-S. Nam, A. Ardavan, M. Kurmoo, and P. Day, J. Phys.: Condens. Matter 12, L641 (2000).

    ADS  Google Scholar 

  12. M. A. Tanatar, T. Ishiguro, H. Tanaka, and H. Kobayashi, Phys. Rev. B 66, 134503 (2002).

    Article  ADS  Google Scholar 

  13. A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich, J. D. Thompson, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. Lett. 89, 137002 (2002).

    Article  ADS  Google Scholar 

  14. C. F. Miclea, M. Nicklas, D. Parker, K. Maki, J. L. Sarrao, J. D. Thompson, G. Sparn, and F. Steglich, Phys. Rev. Lett. 96, 117001 (2006).

    Article  ADS  Google Scholar 

  15. S. Uji, T. Terashima, M. Nishimura, Y. Takahide, T. Konoike, K. Enomoto, H. Cui, H. Kobayashi, A. Kobayashi, H. Tanaka, M. Tokumoto, E. S. Choi, T. Tokumoto, D. Graf, and J. S. Brooks, Phys. Rev. Lett. 97, 157001 (2006).

    Article  ADS  Google Scholar 

  16. J. Shinagawa, Y. Kurosaki, F. Zhang, C. Parker, S. E. Brown, D. Jerome, J. B. Christensen, and K. Bechgaard, Phys. Rev. Lett. 98, 147002 (2007).

    Article  ADS  Google Scholar 

  17. R. Lortz, Y. Wang, A. Demuer, P. H. M. Bottger, B. Bergk, G. Zwicknagl, Y. Nakazawa, and J. Wosnitza, Phys. Rev. Lett. 99, 187002 (2007).

    Article  ADS  Google Scholar 

  18. K. Cho, B. E. Smith, W. A. Coniglio, L. E. Winter, C. C. Agosta, and J. A. Schlueter, Phys. Rev. B 79, 220507(R) (2009).

    Article  ADS  Google Scholar 

  19. J. A. Wright, E. Green, P. Kuhns, A. Reyes, J. Brooks, J. Schlueter, R. Kato, H. Yamamoto, M. Kobayashi, and S. E. Brown, Phys. Rev. Lett. 107, 087002 (2011).

    Article  ADS  Google Scholar 

  20. B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza, Y. Nakazawa, and R. Lortz, Phys. Rev. B 83, 064506 (2011).

    Article  ADS  Google Scholar 

  21. W. A. Coniglio, L. E. Winter, K. Cho, C. C. Agosta, B. Fravel, and L. K. Montgomery, Phys. Rev. B 83, 224507 (2011).

    Article  ADS  Google Scholar 

  22. C. Tarantini, A. Gurevich, J. Jaroszynski, F. Balakirev, E. Bellingeri, I. Pallecchi, C. Ferdeghini, B. Shen, H. H. Wen, and D. C. Larbalestier, Phys. Rev. B 84, 184522 (2011).

    Article  ADS  Google Scholar 

  23. T. Gebre, G. Li, J. B. Whalen, B. S. Conner, H. D. Zhou, G. Grissonnanche, M. K. Kostov, A. Gurevich, T. Siegrist, and L. Balicas, Phys. Rev. B 84, 174517 (2011).

    Article  ADS  Google Scholar 

  24. C. C. Agosta, J. Jin, W. A. Coniglio, B. E. Smith, K. Cho, I. Stroe, C. Martin, S. W. Tozer, T. P. Murphy, E. C. Palm, J. A. Schlueter, and M. Kurmoo, Phys. Rev. B 85, 214514 (2012).

    Article  ADS  Google Scholar 

  25. S. Uji, K. Kodama, K. Sugii, T. Terashima, Y. Takahide, N. Kurita, S. Tsuchiya, M. Kimata, A. Kobayashi, B. Zhou, and H. Kobayashi, Phys. Rev. B 85, 174530 (2012).

    Article  ADS  Google Scholar 

  26. S. Mironov, A. Mel’nikov, and A. Buzdin, Phys. Rev. Lett. 109, 237002 (2012).

    Article  ADS  Google Scholar 

  27. I. V. Bobkova and A. M. Bobkov, Phys. Rev. B 88, 174502 (2013).

    Article  ADS  Google Scholar 

  28. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

    Article  ADS  Google Scholar 

  29. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).

    Article  ADS  Google Scholar 

  30. A. S. Sidorenko, V. I. Zdravkov, J. Kehrle, R. Morari, G. Obermeier, S. Gsell, M. Schreck, C. Mueller, M. Yu. Kupriyanov, V. V. Ryazanov, S. Horn, L. R. Tagirov, and R. Tidecks, JETP Lett. 90, 139 (2009).

    Article  ADS  Google Scholar 

  31. H. Doh, M. Song, and H. Y. Kee, Phys. Rev. Lett. 97, 257001 (2006).

    Article  ADS  Google Scholar 

  32. A. B. Vorontsov, Phys. Rev. Lett. 102, 177001 (2009).

    Article  ADS  Google Scholar 

  33. K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).

    Article  ADS  Google Scholar 

  34. M. Yu. Kupriyanov and V. F. Lukichev, Sov. Phys. JETP 67, 1163 (1988).

    Google Scholar 

  35. A. A. Zyuzin and A. Yu. Zyuzin, JETP Lett. 88, 136 (2008).

    Article  ADS  Google Scholar 

  36. A. A. Zyuzin and A. Yu. Zyuzin, Phys. Rev. B 79, 174514 (2009).

    Article  ADS  Google Scholar 

  37. I. V. Bobkova and A. M. Bobkov, Phys. Rev. B 84, 140508(R) (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bobkova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, A.M., Bobkova, I.V. Enhancing of the critical temperature of an in-plane FFLO state in heterostructures by the orbital effect of the magnetic field. Jetp Lett. 99, 333–339 (2014). https://doi.org/10.1134/S0021364014060034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014060034

Keywords

Navigation