JETP Letters

, Volume 99, Issue 5, pp 309–314 | Cite as

Bigraphene nanomeshes: Structure, properties, and formation

  • L. A. Chernozatonskii
  • V. A. Demin
  • A. A. Artyukh
Condensed Matter

Abstract

New carbon structures of nanomeshes have been considered, which are formed from bilayer graphene by cutting hexagonal holes in it. Edges of these holes by joining chemically active atoms, transforming into folds of graphene, form a closed structure of sp2 hybridized C atoms. The structure and electron properties of several typical nanomeshes, which are superlattices made of joined nanotube and bigraphene fragments, have been studied. Their stability and essential difference of the electronic band structure from those of their analogs-monolayer graphene nanomeshes—have been demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duane, Nature Nanotech. 5, 190 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A.-P. Jauho, and K. Pedersen, Phys. Rev. Lett. 100, 136804 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    W. Liu, Z. F. Wang, Q. W. Shi, J. Yang, and F. Liu, Phys. Rev. B 80, 233405 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    X. Y. Cui, R. K. Zheng, Z. W. Liu, L. Li, B. Delley, C. Stampfl, and S. Ringer, Phys. Rev. B 84, 125410 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    W. Oswald and Z. Wu, Phys. Rev. B 85, 115431 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    L. A. Chernozatonskii, D. G. Kvashnin, O. P. Kvashnina, et al., J. Phys. Chem. C 118, 1318 (2014).CrossRefGoogle Scholar
  7. 7.
    F. Traversi, C. Raillon, S. M. Benameur, K. Liu, S. Khlybov, M. Tosun, D. Krasnozhon, A. Kis, and A. Radenovic, Nature Nanotech. 8, 939 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    F. Börrnert, L. Fu, S. Gorantla, et al., ACS Nano 6, 10327 (2012).CrossRefGoogle Scholar
  9. 9.
    G. Algara-Siller, A. Santana, R. Onionset, et al., Carbon 65, 80 (2013).CrossRefGoogle Scholar
  10. 10.
    Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, Phys. Rev. Lett. 102, 015501 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    J. Y. Huang, F. Ding, B. I. Yakobson, P. Lud, L. Qie, and J. Li, Proc. Natl. Acad. Sci. 106, 10107 (2009).Google Scholar
  12. 12.
    L. A. Chernozatonskii, Phys. Lett. A 172, 173 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    L. A. Chernozatonskii and V. A. Demin, in Proceedings of the International Conference on Nanomaterials: Applications and Properties 2013, Sci. J. 2(3), 03NCNN32 (2013).Google Scholar
  14. 14.
    J. M. Soler, E. Artacho, J. D. Gale, et al., J. Phys.: Condens. Matter 14, 2745 (2002).ADSGoogle Scholar
  15. 15.
    P. Hohenberg and W. Kohn, Phys. Rev. A 136, 864 (1964).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5075 (1981).CrossRefGoogle Scholar
  17. 17.
    J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).CrossRefMATHGoogle Scholar
  18. 18.
    W. Hoover, Phys. Rev. A 31, 1695 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Int. J. Quantum Chem. 100, 548 (2004).CrossRefGoogle Scholar
  20. 20.
    A. Rochefort, D. R. Salahub, and P. Avouris, J. Phys. Chem. B 103, 641 (1999).CrossRefGoogle Scholar
  21. 21.
    Vl. V. Voevodin, S. A. Zhumatiy, S. I. Sobolev, et al., Open Syst. J. 7, 36 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • L. A. Chernozatonskii
    • 1
  • V. A. Demin
    • 1
  • A. A. Artyukh
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations