Skip to main content
Log in

On slow flows of a weakly stratified relativistic fluid in a static gravitational field

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Simplified equations for slow flows of a weakly stratified (in entropy) fluid inside or near a massive astrophysical object have been derived from the variational formulation of ideal general relativistic hydrodynamics under the conditions that the gravitational field in the leading order is centrosymmetric and static and that the effect of a magnetic field is negligibly small. Internal waves and vortices in such systems are soft modes as compared to sound. This circumstance allows the formulation of a “soundproof” Hamiltonian model. This model is an analog of nonrelativistic hydrodynamic anelastic models, which are widely used in studies of internal waves and/or convection in spatially inhomogeneous compressible media in atmospheric physics, geophysics, and astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ogura and N. A. Phillips, J. Atmos. Sci. 19, 173 (1962).

    Article  ADS  Google Scholar 

  2. D. R. Durran, J. Atmos. Sci. 46, 1453 (1989).

    Article  ADS  Google Scholar 

  3. P. R. Bannon, J. Atmos. Sci. 53, 3618 (1996).

    Article  ADS  Google Scholar 

  4. D. R. Durran, J. Fluid Mech. 601, 365 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. A. S. Almgren, J. B. Bell, C. A. Rendleman, and M. Zingale, Astrophys. J. 637, 922 (2006).

    Article  ADS  Google Scholar 

  6. U. Achatz, R. Klein, and F. Senf, J. Fluid Mech. 663, 120 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. B. P. Brown, G. M. Vasil, and E. G. Zweibel, Astrophys. J. 756, 109 (2012).

    Article  ADS  Google Scholar 

  8. G. A. Glatzmaier and P. H. Roberts, Physica D 97, 81 (1996).

    Article  ADS  Google Scholar 

  9. P. H. Roberts and G. A. Glatzmaier, Rev. Mod. Phys. 72, 1081 (2000).

    Article  ADS  Google Scholar 

  10. T. S. Lund and D. C. Fritts, J. Geophys. Res. 117, D21105 (2012).

    Google Scholar 

  11. T. M. Rogers and G. A. Glatzmaier, Astrophys. J. 620, 432 (2005).

    Article  ADS  Google Scholar 

  12. T. M. Rogers and G. A. Glatzmaier, Mon. Not. R. Astron. Soc. 364, 1135 (2005).

    Article  ADS  Google Scholar 

  13. M. K. Browning, Astrophys. J. 676, 1262 (2008).

    Article  ADS  Google Scholar 

  14. L. Villain, S. Bonazzola, and P. Haensel, Phys. Rev. D 71, 083001 (2005).

    Article  ADS  Google Scholar 

  15. S. Bonazzola, L. Villain, and M. Bejger, Class. Quantum Grav. 24, 221 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Cerda-Duran, N. Stergioulas, and J. A. Font, Mon. Not. R. Astron. Soc. 397, 1607 (2009).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987).

    MATH  Google Scholar 

  18. V. P. Ruban, Phys. Rev. D 62, 127504 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. R. Ray, J. Math. Phys. 13, 1451 (1972).

    Article  ADS  MATH  Google Scholar 

  20. J. D. Brown, Class. Quantum Grav. 10, 1579 (1993).

    Article  ADS  MATH  Google Scholar 

  21. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 40, 1087 (1997).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1980).

    Google Scholar 

  23. R. C. Tolman, Relativity, Thermodynamics, and Cosmology (Oxford Univ. Press, New York, 1934).

    Google Scholar 

  24. S. S. Bayin, Phys. Rev. D 18, 2745 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  25. E. N. Glass and S. P. Goldman, J. Math. Phys. 19, 856 (1978).

    Article  ADS  Google Scholar 

  26. J. Hajj-Boutros, J. Math. Phys. 27, 1363 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. S. Rahman and M. Visser, Class. Quantum Grav. 19, 935 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. K. Lake, Phys. Rev. D 67, 104015 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Loranger and K. Lake, Phys. Rev. D 78, 127501 (2008).

    Article  ADS  Google Scholar 

  30. N. Pant, R. N. Mehta, and M. J. Pant, Astrophys. Space Sci. 330, 353 (2010).

    Article  ADS  MATH  Google Scholar 

  31. N. Pant, P. Fuloria, and B. C. Tewari, Astrophys. Space Sci. 340, 407 (2012).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ruban.

Additional information

Original Russian Text © V.P. Ruban, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 99, No. 3, pp. 141–145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruban, V.P. On slow flows of a weakly stratified relativistic fluid in a static gravitational field. Jetp Lett. 99, 124–128 (2014). https://doi.org/10.1134/S0021364014030126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014030126

Keywords

Navigation