Skip to main content
Log in

Doping influence on Sm1 − x Th x OFeAs superconducting properties: Observation of the effect of intrinsic multiple Andreev reflections and determination of the superconducting parameters

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We studied SNS and S-N-S-N-...-S contacts (where S is a superconductor and N is a normal metal) formed by “break-junction” technique in polycrystalline Sm1 − x Th x OFeAs superconductor samples with critical temperatures T C = 34–45 K. In such contacts (intrinsic) multiple Andreev reflections effects were observed. Using spectroscopies based on these effects, we detected two independent bulk order parameters and determined their magnitudes. Theoretical analysis of the large and the small gap temperature dependences revealed superconducting properties of Sm1 − x Th x OFeAs to be driven by intraband coupling, and \(\sqrt {V_{11} V_{22} } /V_{12} \approx 14\) (where V ij are the electron-boson interaction matrix elements), whereas the ratio between density of states for the bands with the small and the large gap, N 2/N 1, correspondingly, was roughly of an order. We estimated “solo” BCS-ratio values in a hypothetic case of zero interband coupling (V ij = 0) for each condensate as 2ΔL, S/k B T L,SC ≤ 4.5. The values are constant within the range of critical temperatures studied, and correspond to a case of strong intraband electron-phonon coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, H. Masahiro, et al., J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, and Z. Xu, Eur. Phys. Lett. 83, 67006 (2008).

    Article  ADS  Google Scholar 

  3. H. H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M. M. Korshunov, I. Eremin, S. L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. 101, 077005 (2008).

    Article  ADS  Google Scholar 

  4. I. A. Nekrasov, Z. V. Pchelkina, and M. V. Sadovskii, JETP Lett. 87, 560 (2008).

    Article  ADS  Google Scholar 

  5. D. J. Singh and M. H. Du, Phys. Rev. Lett. 100, 237003 (2008).

    Article  ADS  Google Scholar 

  6. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

    Article  ADS  Google Scholar 

  7. P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  8. C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature 453, 899 (2008).

    Article  ADS  Google Scholar 

  9. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  10. M. M. Korshunov and I. Eremin, Phys. Rev. B 78, 140509(R) (2008).

    Article  ADS  Google Scholar 

  11. J. Paglione and R. L. Greene, Nature Phys. 6, 645 (2010).

    Article  ADS  Google Scholar 

  12. S. Wakimoto, K. Kodama, M. Ishikado, M. Matsuda, R. Kajimoto, M. Arai, K. Kakurai, F. Esaka, A. Iyo, H. Kito, H. Eisaki, and S. Shamoto, J. Phys. Soc. Jpn. 79, 074715 (2010).

    Article  ADS  Google Scholar 

  13. S. Shamoto, M. Ishikado, A. D. Christianson, M. D. Lumsden, S. Wakimoto, K. Kodama, A. Iyo, and M. Arai, Phys. Rev. B 82, 172508 (2010).

    Article  ADS  Google Scholar 

  14. Y. G. Ponomarev, S. A. Kuzmichev, T. E. Kuzmicheva, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, O. S. Volkova, A. N. Vasiliev, V. M. Pudalov, A. V. Sadakov, A. S. Usol’tsev, T. Wolf, E. P. Khlybov, and L. F. Kulikova, J. Supercond. Novel Magn. 26, 2867 (2013).

    Article  Google Scholar 

  15. S. Onari and H. Kontani, Phys. Rev. Lett. 104, 177001 (2009).

    Article  ADS  Google Scholar 

  16. Y. Zhou, H. Zhang, H. Lin, and C. D. Gong, arXiv:1311.0611 (unpublished).

  17. M. Sato, Y. Kobayashi, S. C. Lee, H. Takahashi, E. Satomi, and Y. Miura, J. Phys. Soc. Jpn. 79, 014710 (2010).

    Article  ADS  Google Scholar 

  18. S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. Buchner, Phys. Rev. Lett. 105, 067002 (2010).

    Article  ADS  Google Scholar 

  19. K. Ikeuchi, M. Sato, R. Kajimoto, Y. Kobayashi, K. Suzuki, M. Itoh, P. Bourges, A. D. Christianson, H. Nakamura, and M. Machida, arXiv:1310.7424 (unpublished).

  20. J. Ishizuka, T. Yamada, Y. Yanagi, and Y. Ono, J. Phys. Soc. Jpn. 82, 123712 (2013).

    Article  Google Scholar 

  21. I. R. Shein and A. L. Ivanovskii, Phys. Lett. A 375, 1028 (2011).

    Article  ADS  Google Scholar 

  22. R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Yin, Y. J. Yan, Q. J. Li, B. C. Shi, W. S. Chu, Z. Y. Wu, and X. H. Chen, Nature 459, 64 (2009).

    Article  ADS  Google Scholar 

  23. P. Seidel, Supercond. Sci. Technol. 24, 043001 (2011).

    Article  ADS  Google Scholar 

  24. Y. Fasano, I. Maggio-Aprile, N. D. Zhigadlo, S. Katrych, J. Karpinski, and O. Fischer, Phys. Rev. Lett. 105, 167005 (2010).

    Article  ADS  Google Scholar 

  25. D. Daghero, M. Tortello, G. A. Ummarino, V. A. Stepanov, F. Bernardini, M. Tropeano, M. Putti, and R. S. Gonnelli, Supercond. Sci. Technol. 25, 084012 (2012).

    Article  ADS  Google Scholar 

  26. Y. L. Wang, L. Shan, L. Fang, P. Cheng, C. Ren, and H. H. Wen, Supercond. Sci. Technol. 22, 015018 (2009).

    Article  ADS  Google Scholar 

  27. T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature 453, 1224 (2008).

    Article  ADS  Google Scholar 

  28. Y. G. Naidyuk, O. E. Kvitnitskaya, I. K. Yanson, G. Fuchs, S. Haindl, M. Kidszun, L. Schultz, and B. Holzapfel, Supercond. Sci. Technol. 24, 065010 (2010).

    Article  ADS  Google Scholar 

  29. D. Daghero, M. Tortello, G. A. Ummarino, and R. S. Gonnelli, Rep. Prog. Phys. 74, 124509 (2011).

    Article  ADS  Google Scholar 

  30. A. Dubroka, K. W. Kim, M. Roessle, V. K. Malik, R. H. Liu, G. Wu, X. H. Chen, and C. Bernhard, Phys. Rev. Lett. 101, 097011 (2008).

    Article  ADS  Google Scholar 

  31. T. E. Shanygina, Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, S. N. Tchesnokov, O. E. Omel’yanovskii, A. V. Sadakov, Yu. F. Eltsev, A. S. Dormidontov, V. M. Pudalov, A. S. Usol’tsev, and E. P. Khlybov, JETP Lett. 93, 94 (2011).

    Article  ADS  Google Scholar 

  32. K. A. Yates, K. Morrison, J. A. Rodgers, G. B. S Penny, J. W. G. Bos, J. P. Attfield, and L. F. Cohen, New J. Phys. 11, 025015 (2009).

    Article  ADS  Google Scholar 

  33. N. D. Zhigadlo, S. Katrych, Z. Bukowski, S. Weyeneth, R. Puzniak, and J. Karpinski, J. Phys.: Condens. Matter 20, 342202 (2008).

    Google Scholar 

  34. N. D. Zhigadlo, S. Katrych, S. Weyeneth, R. Puzniak, P. J. W. Moll, Z. Bukowski, J. Karpinski, H. Keller, and B. Batlogg, Phys. Rev. B 82, 064517 (2010).

    Article  ADS  Google Scholar 

  35. A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

    Google Scholar 

  36. Yu. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).

    ADS  Google Scholar 

  37. M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B 27, 6739 (1983).

    Article  ADS  Google Scholar 

  38. G. B. Arnold, J. Low Temp. Phys. 68, 1 (1987).

    Article  ADS  Google Scholar 

  39. R. Kümmel, U. Gunsenheimer, and R. Nikolsky, Phys. Rev B 42, 3992 (1990).

    Article  ADS  Google Scholar 

  40. J. C. Cuevas, A. Martin-Rodero, and A. L. Yeyati, Phys. Rev. B 54, 7366 (1996).

    Article  ADS  Google Scholar 

  41. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).

    Article  ADS  Google Scholar 

  42. T. Okada, H. Takahashi, Y. Imai, K. Kitagawa, K. Matsubayashi, Y. Uwatoko, and A. Maeda, Phys. Rev. B 86, 064516 (2012).

    Article  ADS  Google Scholar 

  43. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, O. S. Volkova, A. N. Vasiliev, T. Hanke, C. Hess, G. Behr, R. Klingeler, and B. Buchner, Phys. Rev. B 79, 224517 (2009).

    Article  ADS  Google Scholar 

  44. Ya. G. Ponomarev, K. K. Uk, M. A. Lorentz, et al., Inst. Phys. Conf. Ser. 167, 241 (2000).

    Google Scholar 

  45. B. A. Aminov, L. I. Leonyuk, T. E. Oskina, H. Piel, Y.G. Ponomarev, H. T. Rachimov, K. Sethupathi, M. V. Sudakova, and D. Wehler, Adv. Supercond. V, 1037 (1993).

    Book  Google Scholar 

  46. H. Nakamura, M. Machida, T. Koyama, and N. Hamada, J. Phys. Soc. Jpn. 78, 123712 (2009).

    Article  ADS  Google Scholar 

  47. T. E. Kuzmicheva, S. A. Kuzmichev, M. G. Mikheev, Ya. G. Ponomarev, S. N. Tchesnokov, Yu. F. Eltsev, V. M. Pudalov, K. S. Pervakov, A. V. Sadakov, A. S. Usoltsev, E. P. Khlybov, and L. F. Kulikova, Eur. Phys. Lett. 102, 67006 (2013).

    Article  ADS  Google Scholar 

  48. V. A. Moskalenko, Fiz. Met. Metall. 8, 503 (1959).

    Google Scholar 

  49. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    Article  ADS  MATH  Google Scholar 

  50. Ya. G. Ponomarev, S. A. Kuzmichev, N. M. Kadomtseva, M. G. Mikheev, M. V. Sudakova, S. N. Chesnokov, E. G. Maksimov, S. I. Krasnosvobodtsev, L. G. Sevast’yanova, K. P. Burdina, and B. M. Bulychev, JETP Lett. 79, 484 (2004); S. A. Kuzmichev, T. E. Shanygina, S. N. Tchesnokov, and S. I. Krasnosvobodtsev, Solid State Commun. 152, 119 (2012).

    Article  ADS  Google Scholar 

  51. S. A. Kuzmichev, T. E. Kuzmicheva, A. I. Boltalin, and I. V. Morozov, JETP Lett. 98, 722 (2013).

    Article  ADS  Google Scholar 

  52. T. E. Shanygina, S. A. Kuzmichev, M. G. Mikheev, Ya. G. Ponomarev, M. V. Sudakova, S. N. Tchesnokov, Yu. F. Eltsev, V. M. Pudalov, A. V. Sadakov, A. S. Usol’tsev, E. P. Khlybov, and L. F. Kulikova, J. Supercond. Novel Magn. 26, 2661 (2013).

    Article  Google Scholar 

  53. I. K. Yanson, V. V. Fisun, N. L. Bobrov, Yu. G. Naidyuk, W. N. Kang, E. M. Choi, H. J. Kim, and S. I. Lee, Phys. Rev. B 67, 024517 (2003).

    Article  ADS  Google Scholar 

  54. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 91, 518 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuzmicheva.

Additional information

Original Russian Text © T.E. Kuzmicheva, S.A. Kuzmichev, N.D. Zhigadlo, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 99, No. 3, pp. 154–164.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmicheva, T.E., Kuzmichev, S.A. & Zhigadlo, N.D. Doping influence on Sm1 − x Th x OFeAs superconducting properties: Observation of the effect of intrinsic multiple Andreev reflections and determination of the superconducting parameters. Jetp Lett. 99, 136–145 (2014). https://doi.org/10.1134/S0021364014030102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014030102

Keywords

Navigation