Skip to main content
Log in

Calculation of the fluctuation-dissipation ratio for the nonequilibrium critical behavior of disordered systems

  • Methods of Theoretical Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The values of a new universal parameter characterizing a nonequilibrium critical behavior, namely, the fluctuation-dissipation ratio specifying a fundamental relation between the dynamic response function and the correlation function, are calculated for the disordered three-dimensional Ising model. The analysis of the two-time dependence for autocorrelation functions and the ac susceptibility for the systems with spin densities p = 1.0, 0.8, and 0.6 shows the aging effects characterized by the anomalous slowing of relaxation in the system with the growth of the waiting time and the violation of the fluctuation-dissipation theorem. To improve the accuracy of the ac susceptibility calculations, the “thermal bath” technique has been used without introducing the applied magnetic field in the simulation. It has been shown that the structural defects lead to the pronounced enhancement of the aging effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Henkel and M. Pleimling, in Non-Equilibrium Phase Transitions (Springer, Heidelberg, 2010), p. 2.

    Book  MATH  Google Scholar 

  2. N. Afzal and M. Pleimling, Phys. Rev. E 87, 012114 (2013).

    Article  ADS  Google Scholar 

  3. L. Berthier and J. Kurchan, Nature Phys. 9, 310 (2013).

    Article  ADS  Google Scholar 

  4. P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. L. Berthier, P. C. W. Holdsworth, and M. Sellitto, J. Phys. A 34, 1805 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. G. N. Bochkov and Yu. E. Kuzovlev, Phys. Usp. 56, 590 (2013).

    Article  ADS  Google Scholar 

  7. P. Calabrese and A. Gambassi, Phys. Rev. B 66, 212407 (2002).

    Article  ADS  Google Scholar 

  8. J. P. Nilmeier, G. E. Crooks, D. D. L. Minh, and J. D. Chodera, Pro. Natl. Acad. Sci. 108, E1009 (2011).

    Article  ADS  Google Scholar 

  9. G. N. Bochkov and Yu. E. Kuzovlev, Sov. Phys. JETP 45, 125 (1977).

    ADS  Google Scholar 

  10. G. E. Crooks, J. Stat. Phys. 90, 1481 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

    Article  ADS  Google Scholar 

  12. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and C. C. Tsirkin, J. Exp. Theor. Phys. 106, 1095 (2008).

    Article  ADS  Google Scholar 

  13. V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and M. V. Rychkov, J. Exp. Theor. Phys. 110, 253 (2010).

    Article  ADS  Google Scholar 

  14. P. V. Prudnikov and D. N. Kulikov, JETP Lett. 93, 103 (2011).

    Article  ADS  Google Scholar 

  15. V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, and A. S. Krinitsyn, J. Exp. Theor. Phys. 105, 371 (2007).

    Article  ADS  Google Scholar 

  16. V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A. N. Vakilov, E. A. Pospelov, and M. V. Rychkov, Phys. Rev. E 81, 011130 (2010).

    Article  ADS  Google Scholar 

  17. P. V. Prudnikov and M. A. Medvedeva, Progr. Theor. Phys. 127, 369 (2012).

    Article  ADS  Google Scholar 

  18. N. Rosov, C. Hohenemser, and M. Eibschutz, Phys. Rev. B 46, 3452 (1992).

    Article  ADS  Google Scholar 

  19. P. Calabrese and A. Gambassi, Phys. Rev. E 66, 066101 (2002).

    Article  ADS  Google Scholar 

  20. F. Ricci-Tersenghi, Phys. Rev. E 68, 065104 (2003).

    Article  ADS  Google Scholar 

  21. C. Chatelain, J. Stat. Mech., P06006 (2004).

    Google Scholar 

  22. W. Janke, in Lecture Notes in Physics (Springer, Berlin, 2008), vol. 739, p. 79.

    Google Scholar 

  23. H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73, 539 (1989).

    Article  ADS  Google Scholar 

  24. A. Jaster, J. Mainville, L. Schülke, and B. Zheng, J. Phys. A 32, 1395 (1999).

    Article  ADS  MATH  Google Scholar 

  25. V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Theoretical Description Methods of Non-Equilibrium Critical Behavior of Structurally Disordered Systems (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Prudnikov.

Additional information

Original Russian Text © P.V. Prudnikov, V.V. Prudnikov, E.A. Pospelov, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 10, pp. 693–699.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudnikov, P.V., Prudnikov, V.V. & Pospelov, E.A. Calculation of the fluctuation-dissipation ratio for the nonequilibrium critical behavior of disordered systems. Jetp Lett. 98, 619–625 (2014). https://doi.org/10.1134/S0021364013230100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013230100

Keywords

Navigation