Skip to main content
Log in

Decay of helicity in homogeneous turbulence

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The self-similar relaxation of helicity in homogeneous turbulence has been considered taking into account integral invariants ∫ 0 r mu(x)ω(x + r)〉 dr = I h m (where ω = curlu and r = |r|). It has been shown that integral invariants with m = 3 for both helicity and energy are possible in addition to helical analogs of Loitsyanskii (m = 4) and Birkhoff-Saffman (m = 2) invariants associated with the conservation laws of momentum and angular momentum, respectively. Helicity always relaxes more rapidly than the energy. Its decay exponent is in the interval from −3/2 to −5/2 versus the interval from −6/5 to −10/7 for the energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (Gidrometeoizdat, St.-Petersburg, 1996; MIT Press, Cambridge, MA, 1971), pt. 2.

    Google Scholar 

  2. U. Frisch, Turbulence. The Legacy of A.N. Kolmogorov (Cambridge Univ. Press, Cambridge, UK, 1996).

    Google Scholar 

  3. A. Llor, Eur. J. Mech. B: Fluids 30, 480 (2011).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. L. G. Loitsyanskii, Trudy TsAGI 440, 3 (1939).

    Google Scholar 

  5. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 31, 538 (1941).

    MATH  Google Scholar 

  6. G. K. Batchelor and I. Proudman, Phil. Trans. R. Soc. London 248, 369 (1956).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. J. R. Chasnov, Phys. Fluids A 5, 2579 (1993).

    Article  ADS  MATH  Google Scholar 

  8. T. Ishida, P. A. Davidson, and Y. Kaneda, J. Fluid Mech. 564, 455 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. P. G. Saffman, Phys. Fluids 10, 1349 (1967).

    Article  ADS  Google Scholar 

  10. G. Birkhoff, Commun. Pure Appl. Math. 7, 19 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Comte-Bellot and S. Corrsin, J. Fluid Mech. 25, 657 (1966).

    Article  ADS  Google Scholar 

  12. O. G. Chkhetiani, JETP Lett. 63, 808 (1996).

    Article  ADS  Google Scholar 

  13. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 19 (1941).

    ADS  Google Scholar 

  14. A. Llor, arXiv:physics/0612220v1 [physics.flu-dyn] (2006).

  15. Z. Warhaft and J. L. Lumley, J. Fluid Mech. 88, 659 (1978).

    Article  ADS  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  17. P. G. Saffman, Vortex Dynamics (Cambridge Univ. Press, Cambridge, UK, 1995; Nauchnyi Mir, Moscow, 2000).

    Google Scholar 

  18. P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford Univ. Press, Oxford, UK, 2004).

    Google Scholar 

  19. F. Hussain and K. Duraisamy, Phys. Fluids 23, 021701 (2010).

    Article  ADS  Google Scholar 

  20. S. Kurien, M. A. Taylor, and T. Matsumoto, Phys. Rev. E 69, 066313 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. C. Vassilicos, Phys. Lett. A 375, 1010 (2011).

    Article  ADS  Google Scholar 

  22. J. C. André and M. Lesieur, J. Fluid Mech. 81, 187 (1977).

    Article  ADS  MATH  Google Scholar 

  23. W. Polifke and L. Shtilman, Phys. Fluids A 1, 2025 (1989).

    Article  ADS  Google Scholar 

  24. Y. Morinishi, K. Nakabayashi, and S. Ren, JSME Int. J. Ser. B 44, 410 (2001).

    Article  ADS  Google Scholar 

  25. E. B. Gledzer, Dokl. Phys. 53, 216 (2008).

    Article  ADS  MATH  Google Scholar 

  26. A. Brandenburg and A. Petrosyan, Astron. Nachr. 333, 195 (2012).

    Article  ADS  Google Scholar 

  27. O. F. Vasil’ev, Fundamentals of the Mechanics of Helical and Circulation Flows (Gosenergoizdat, Moscow, Leningrad, 1958) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Chkhetiani.

Additional information

Original Russian Text © A.O. Levshin, O.G. Chkhetiani, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 10, pp. 670–675.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levshin, A.O., Chkhetiani, O.G. Decay of helicity in homogeneous turbulence. Jetp Lett. 98, 598–602 (2014). https://doi.org/10.1134/S0021364013230070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013230070

Keywords

Navigation