Skip to main content
Log in

Spatially modulated magnetic structure of AgFeO2: Mössbauer study on 57Fe nuclei

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The results of the Mössbauer study of ferrite AgFeO2 manifesting multiferroic properties (at TT N2) have been presented. The hyperfine interaction parameters of 57Fe nuclei have been analyzed in a wide temperature range including the points of two magnetic phase transitions (T N2 ≈ 7–9 K and T N1 ≈ 15–16 K). It has been shown that the Mössbauer spectra of the 57Fe nuclei are sensitive to the variations of the character of the magnetic ordering of Fe3+ ions in the studied ferrite. The results of the model identification of a series of spectra (4.7 K ≤ TT N2) under the assumption of the cycloid magnetic structure of ferrite AgFeO2 have been presented. The analysis of the results has been performed in comparison with the literature data for other oxide multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Wang, J.-M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).

    Article  ADS  Google Scholar 

  2. B. V. Beznosikov and K. S. Aleksandrov, Preprint No. 843 (Inst. Fiziki im. L.V. Kirenskogo SO RAN, Krasnoyarsk, 2007).

  3. T. Nakajima, S. Mitsuda, K. Takahashi, et al., Phys. Rev. B 79, 214423 (2009).

    Article  ADS  Google Scholar 

  4. E. Pachoud, C. Martin, B. Kundys, et al., J. Solid State Chem. 183, 344 (2010).

    Article  ADS  Google Scholar 

  5. N. Terada, T. Nakajima, S. Mitsuda, et al., Phys. Rev. B 78, 014101 (2008).

    Article  ADS  Google Scholar 

  6. A. Vasiliev, O. Volkova, I. Presniakov, et al., J. Phys.: Condens. Matter 22, 016007 (2010).

    ADS  Google Scholar 

  7. N. Terada, D. D. Khalyavin, P. Manuel, et al., Phys. Rev. Lett. 109, 097203 (2012).

    Article  ADS  Google Scholar 

  8. A. Palewicza, T. Szumiatab, R. Przenioslo, et al., Solid State Commun. 140, 359 (2006).

    Article  ADS  Google Scholar 

  9. A. V. Zalesskii, A. A. Frolov, A. K. Zvezdin, et al., J. Exp. Theor. Phys. 95, 101 (2002).

    Article  ADS  Google Scholar 

  10. R. Przenioslo, A. Palewicz, M. Regulski, et al., J. Phys.: Condens. Matter 23, 279501 (2011).

    Google Scholar 

  11. J.-P. Doumerc, A. Ammar, A. Wichainchai, et al., J. Phys. Chem. Solids 48, 37 (1987).

    Article  ADS  Google Scholar 

  12. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  13. F. Menil, J. Phys. Chem. Solids 46, 763 (1985).

    Article  ADS  Google Scholar 

  14. R. R. Sharma, Phys. Rev. B 6, 4310 (1972).

    Article  ADS  Google Scholar 

  15. V. S. Rusakov and D. A. Khramov, Izv. Akad. Nauk, Ser. Fiz. 56(7), 201 (1992).

    Google Scholar 

  16. C. A. Taft, J. Phys. C: Solid State Phys. 10, L369 (1977).

    Article  ADS  Google Scholar 

  17. H. Keller and I. M. Savic, Phys. Rev. B 28, 2638 (1983).

    Article  ADS  Google Scholar 

  18. O. A. Petrenko, M. R. Lees, G. Balakrishnan, et al., J. Phys.: Condens. Matter 17, 2741 (2005).

    ADS  Google Scholar 

  19. V. S. Rusakov, Izv. Akad. Nauk, Ser. Fiz. 63, 1389 (1999).

    Google Scholar 

  20. A. H. Muir, Jr. and H. Wiedersich, J. Phys. Chem. Solids 28, 65 (1967).

    Article  ADS  Google Scholar 

  21. U. Atzmony, M. P. Dariel, and G. Dublon, Phys. Rev. B 14, 3713 (1976).

    Article  ADS  Google Scholar 

  22. F. Ye, Y. Ren, and Q. Huang, Phys. Rev. B 73, 220404 (2006).

    Article  ADS  Google Scholar 

  23. A. V. Zalesskii, A. K. Zvezdin, and A. A. Frolov, JETP Lett. 71, 465 (2000).

    Article  ADS  Google Scholar 

  24. R. S. Fishman, F. Ye, J. A. Fernandez-Baca, et al., Phys. Rev. B 78, 140407 (2008).

    Article  ADS  Google Scholar 

  25. F. Ye, J. A. Fernandez-Baca, R. S. Fishman, et al., Phys. Rev. Lett. 99, 157201 (2007).

    Article  ADS  Google Scholar 

  26. R. S. Fishman, J. Appl. Phys. 103, 07B109 (2008).

    Article  Google Scholar 

  27. R. S. Fishman, Phys. Rev. B 85, 024411 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Cieslak and S. M. Dubiel, Nucl. Instrum. Methods Phys. Res. B 95, 131 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rusakov.

Additional information

Original Russian Text © V.S. Rusakov, I.A. Presnyakov, A.V. Sobolev, A.M. Gapochka, M.E. Matsnev, A.A. Belik, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 9, pp. 613–619.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusakov, V.S., Presnyakov, I.A., Sobolev, A.V. et al. Spatially modulated magnetic structure of AgFeO2: Mössbauer study on 57Fe nuclei. Jetp Lett. 98, 544–550 (2014). https://doi.org/10.1134/S0021364013220098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013220098

Keywords

Navigation