Skip to main content
Log in

Revisiting the hopes for scalable quantum computation

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The hopes for scalable quantum computing rely on the “threshold theorem”: once the error per qubit per gate is below a certain value, the methods of quantum error correction allow indefinitely long quantum computations. The proof is based on a number of assumptions, which are supposed to be satisfied exactly, like axioms, e.g., zero undesired interactions between qubits, etc. However, in the physical world no continuous quantity can be exactly zero, it can only be more or less small. Thus the “error per qubit per gate” threshold must be complemented by the required precision with which each assumption should be fulfilled. In the absence of this crucial information, the prospects of scalable quantum computing remain uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Steane, Rep. Prog. Phys. 61, 117 (1998); arXiv:quant-ph/9708022.

    Article  ADS  MathSciNet  Google Scholar 

  2. Report of the Quantum Information Science and Technology Experts Panel. http://qist.lanl.gov/qcomp-map.shtml

  3. P. Shor, in Proceedings of the 37th Symposium on Foundations of Computing (IEEE Computer Society Press, 1996), p. 56; arXiv:quant-ph/9605011.

    Google Scholar 

  4. J. Preskill, in Introduction to Quantum Computation and Information, Ed. by H.-K. Lo, S. Papesku, and T. Spiller (World Scientific, Singapore, 1998), p. 213; arXiv:quant-ph/9712048.

  5. D. Gottesman, in Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium, Ed. by S. J. Lomonaco, Jr. (American Mathematical Society, Providence, Rhode Island, 2002), p. 221; arXiv:quant-ph/0004072.

  6. A. M. Steane, in Decoherence and Its Implications in Quantum Computation and Information Transfer, Ed. by A. Gonis and P. Turchi (IOS Press, Amsterdam, 2001), p. 284; arXiv:quant-ph/0304016.

  7. A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).

    Article  ADS  Google Scholar 

  8. A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. D. Aharonov and M. Ben-Or, in Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (ACM Press, New York, 1998), p. 176; arXiv:quant-ph/9611025; arXiv:quant-ph/9906129.

    Google Scholar 

  10. A. Yu. Kitaev, Russ. Math. Surv. 52, 1191 (1997); A. Yu. Kitaev, in Quantum Communication, Computing, and Measurement, Ed. by O. Hirota, A. S. Holevo, and C. M. Caves (Plenum, New York, 1997), p. 181.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Knill, R. Laflamme, and W. Zurek, Proc. R. Soc. London A 454, 365 (1998); arXiv: quant-ph/9702058.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. P. Aliferis, D. Gottesman, and J. Preskill, Quantum Inf. Comput. 8, 181 (2008); arXiv:quant-ph/0703264.

    MATH  MathSciNet  Google Scholar 

  13. E. Knill, Nature 463, 441 (2010).

    Article  ADS  Google Scholar 

  14. D. Staudt, arXiv:1111.1417 (2011).

  15. J. Preskill, Proc. R. Soc. London A 454, 469 (1998); arXiv:quant-ph/9705032.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. J. Preskill, in Introduction to Quantum Computation, Ed. by H.-K. Lo, S. Popescu, and T. P. Spiller (World Scientific, Singapore, 1998); arXiv:quant-ph/9712048.

  17. M. I. Dyakonov, in Future Trends in Microelectronics. Up the Nano Creek, Ed. by S. Luryi, J. Xu, and A. Zaslavsky (Wiley, New York, 2007), p. 4; arXiv:quant-ph/0610117.

  18. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Book  MATH  Google Scholar 

  19. P. Schindler et al., Science 332, 1059 (2011); E. Lucero et al., arXiv:1202.5707 (2012); M. D. Reed et al., Nature 482, 382 (2012); Xing-Can Yao et al., arXiv:1202.5459 (2012); E. Martín-López et al., Nature Photon. 6, 773 (2012); arXiv:1111.4147 (2011).

    Article  ADS  Google Scholar 

  20. J. Preskill, Quantum Inf. Comput. 13, 181 (2013); arXiv:1207.6131 (2012).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Dyakonov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyakonov, M.I. Revisiting the hopes for scalable quantum computation. Jetp Lett. 98, 514–518 (2013). https://doi.org/10.1134/S0021364013210042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013210042

Keywords

Navigation