Skip to main content
Log in

Dark energy in systems of galaxies

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1–10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1–3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (∼1 Mpc) can be extended to the scale of clusters (∼10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess, A. V. Filippenko, P. Challis, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmuter, G. Aldering, G. Goldhaber, et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. G. Hinshaw, D. Larson, E. Komatsu, et al., astroph/1212.5226 (2012).

    Google Scholar 

  4. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al., astro-ph/1303.5076 (2013).

  5. J. Einasto, astro-ph/0901.0632 (2009).

  6. A. D. Chernin, P. Teerikorpi, and Yu. V. Baryshev, astro-ph/0012021 (2000); Adv. Space Res. 31, 459 (2003).

  7. A. D. Chernin, Phys. Usp. 44, 1099 (2001).

    Article  ADS  Google Scholar 

  8. Yu. V. Baryshev, A. D. Chernin, and P. Teerikorpi, Astron. Astrophys. 378, 729 (2001).

    Article  ADS  Google Scholar 

  9. A. D. Chernin, Phys. Usp. 51, 253 (2008).

    Article  ADS  Google Scholar 

  10. A. D. Chernin, Usp. Fiz. Nauk 183, 741 (2013).

    Article  Google Scholar 

  11. G. G. Byrd, A. D. Chernin, and M. J. Valtonen, Cosmology: Foundations and Frontiers (URSS, Moscow, 2007).

    Google Scholar 

  12. G. G. Byrd, A. D. Chernin, P. Teerikorpi, and M. J. Valtonen, Paths to Dark Energy: Theory and Observation (de Gruyter, New York, 2012).

    Book  Google Scholar 

  13. I. D. Karachentsev, Astron. J. 129, 178 (2005).

    Article  ADS  Google Scholar 

  14. I. D. Karachentsev, R. B. Tully, A. Dolphin, et al., Astron. J. 133, 504 (2007).

    Article  ADS  Google Scholar 

  15. I. D. Karachentsev, A. Dolphin, R. B. Tully, et al., Astron. J. 131, 1361 (2006).

    Article  ADS  Google Scholar 

  16. I. D. Karachentsev, V. E. Karachentseva, W. K. Hitchtmeier, et al., Astron. J. 127, 2031 (2004).

    Article  ADS  Google Scholar 

  17. I. D. Karachentsev, O. G. Kashibadze, D. I. Makarov, and R. B. Tully, Mon. Not. R. Astron. Soc. 393, 1265 (2009).

    Article  ADS  Google Scholar 

  18. I. D. Karachentsev, D. I. Makarov, and E. I. Kaisina, Astron. J. 145, 101 (2013).

    Article  ADS  Google Scholar 

  19. E. I. Kaisina, D. I. Makarov, I. D. Karachentsev, and S. S. Kaisin, Astrophys. Bull. 67, 115 (2012).

    Article  ADS  Google Scholar 

  20. E. B. Gliner, Sov. Phys. JETP 22, 378 (1965).

    ADS  Google Scholar 

  21. N. V. Emelyanov and M. Yu. Kovalyov, Mon. Not. R. Astron. Soc. 429, 3475 (2013).

    ADS  Google Scholar 

  22. N. V. Emelyanov and M. Yu. Kovalyov, (2013, in press).

  23. A. D. Chernin, D. I. Nagirner, and S. V. Starikova, Astron. Astrophys. 399, 19 (2003).

    Article  ADS  MATH  Google Scholar 

  24. D. I. Makarov and I. D. Karachentsev, Mon. Not. R. Astron. Soc. 412, 2498 (2011).

    Article  ADS  Google Scholar 

  25. I. D. Karachentsev, R. B. Tully, A. Dolphin, et al., Astron. J. 133, 504 (2007).

    Article  ADS  Google Scholar 

  26. I. D. Karachentsev, A. Dolphin, R. B. Tully, et al., Astron. J. 131, 1361 (2006).

    Article  ADS  Google Scholar 

  27. A. D. Chernin, I. D. Karachentsev, O. G. Kashibadze, et al., Astrophys. 50, 405 (2007).

    Article  ADS  Google Scholar 

  28. A. D. Chernin, I. D. Karachentsev, D. I. Makarov, et al., Astron. Astrophys. Trans. 26, 275 (2007).

    Article  ADS  Google Scholar 

  29. A. D. Chernin, I. D. Karachentsev, M. J. Valtonen, et al., Astron. Astrophys. 467, 933 (2007).

    Article  ADS  Google Scholar 

  30. P. Teerikorpi, A. D. Chernin, I. D. Karachentsev, and M. J. Valtonen, Astron. Astrophys. 483, 383 (2008).

    Article  ADS  Google Scholar 

  31. P. Teerikorpi and A. D. Chernin, Astron. Astrophys. 516, 93 (2010).

    Article  ADS  Google Scholar 

  32. A. D. Chernin, I. D. Karachentsev, M. J. Valtonen, et al., Astron. Astrophys. 415, 19 (2004).

    Article  ADS  Google Scholar 

  33. A. D. Chernin, I. D. Karachentsev, M. J. Valtonen, et al., Astron. Astrophys. 507, 1271 (2009).

    Article  ADS  Google Scholar 

  34. I. D. Karachentsev and O. G. Nasonova, Mon. Not. R. Astron. Soc. 405, 197 (2010).

    Google Scholar 

  35. O. G. Nasonova, J. A. de Freitas Pacheco, and I. D. Karachentsev, Astron. Astrophys. 532, 104 (2011).

    Article  ADS  Google Scholar 

  36. A. D. Chernin, I. D. Karachentsev, O. G. Nasonova, et al., Astron. Astrophys. 520, A104 (2010).

    Article  ADS  Google Scholar 

  37. A. D. Chernin, P. Teerikorpi, V. P. Dolgachev, et al., Astron. Rep. 56, 653 (2012).

    Article  ADS  Google Scholar 

  38. F. Zwicky, Helv. Phys. Acta 6, 110 (1933).

    ADS  Google Scholar 

  39. M. J. Geller, A. Diaferio, and M. J. Kurtz, Astrophys. J. 517, L23 (1999).

    Article  ADS  Google Scholar 

  40. M. J. Geller, A. Diaferio, and M. J. Kurtz, Astron. J. 142, 143 (2011).

    Article  ADS  Google Scholar 

  41. J. Einasto and U. Haud, Astron. Astrophys. 223, 89 (1989).

    ADS  Google Scholar 

  42. A. D. Chernin, G. S. Bisnovatyi-Kogan, P. Teerikorpi, et al., Astron. Astrophys. 553, 101 (2013).

    Article  ADS  Google Scholar 

  43. J. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 463, 563 (2005).

    Google Scholar 

  44. L. Hernquist, Astrophys. J. 356, 359 (1990).

    Article  ADS  Google Scholar 

  45. W. R. Forman, Astrophys. J. 159, 719 (1970).

    Article  ADS  Google Scholar 

  46. J. C. Jackson, Mon. Not. R. Astron. Soc. 148, 249 (1970).

    ADS  Google Scholar 

  47. A. D. Chernin, P. Teerikorpi, and M. J. Valtonen, Grav. Cosm. 18, 1 (2012).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Chernin.

Additional information

Original Russian Text © A.D. Chernin, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 6, pp. 394–407.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernin, A.D. Dark energy in systems of galaxies. Jetp Lett. 98, 353–364 (2013). https://doi.org/10.1134/S002136401319003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401319003X

Keywords

Navigation