Skip to main content
Log in

On the behavior of indicators of melting: Lennard-Jones system in the vicinity of the phase transition

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Various indicators of melting for a system of particles whose pair interaction is described by the Lennard-Jones potential have been considered. The behavior of the radial distribution function g(r) and the associated criteria of melting, modified Lindemann criterion, and criteria based on the properties of short-range orientational order (rotational invariants q l and w l of various orders l) has been analyzed in detail in the vicinity of the melting phase transition. A parameter based on the loss of the nearest neighbors of an atom/particle has been proposed to characterize the melting transition. All considered indicators of melting for the Lennard-Jones system have been compared. It has been shown that the indicators of melting derived from the properties of the short-range orientational order are much more sensitive to the melting phase transition and can be used to construct new phenomenological criteria of melting similar to the Lindemann criterion. An additional important advantage of such indicators is the relatively small number of configurations of the system necessary for their calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Stishov, Sov. Phys. Usp. 17, 625 (1975).

    Article  ADS  Google Scholar 

  2. G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).

    Article  ADS  Google Scholar 

  3. S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Blaaderen and P. Wiltzius, Science 270, 1177 (1995).

    Article  ADS  Google Scholar 

  5. U. Gasser et al., Science 292, 5515 (2001).

    Article  Google Scholar 

  6. V. E. Fortov and G. E. Morfill, Complex and Dusty Plasmas: From Laboratory to Space (CRC Press, Boca Raton, 2010).

    Google Scholar 

  7. M. Rubin-Zuzic et al., Nature Phys. 2, 181 (2006).

    Article  ADS  Google Scholar 

  8. B. A. Klumov, Phys. Usp. 53, 1053 (2010).

    Article  ADS  Google Scholar 

  9. J. E. Lennard-Jones, Proc. R. Soc. London A 106, 463 (1924).

    Article  ADS  Google Scholar 

  10. J. P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).

    Article  ADS  Google Scholar 

  11. J. P. Hansen, Phys. Rev. A 2, 221 (1970).

    Article  ADS  Google Scholar 

  12. J. D. Honeycutt and H. C. Andersen, J. Chem. Phys. 91, 4950 (1987).

    Article  Google Scholar 

  13. J. R. Errington, P. J. Debenedetti, and S. Torquato, J. Chem. Phys. 118, 2256 (2003).

    Article  ADS  Google Scholar 

  14. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, Amsterdam, 2006).

    Google Scholar 

  15. F. Saija, S. Prestipino, and P. V. Giaquintac, J. Chem. Phys. 124, 244504 (2006).

    Article  ADS  Google Scholar 

  16. B. Smit and D. Frenkel, Understanding Molecular Simulation (Academic, San Diego, 2002).

    Google Scholar 

  17. H. J. Raveche, R. D. Mountain, and W. B. Streett, J. Chem. Phys. 61, 1970 (1974).

    Article  ADS  Google Scholar 

  18. G. A. Martynov and G. N. Sarkisov, Phys. Rev. B 42, 2504 (1990).

    Article  ADS  Google Scholar 

  19. E. Rabani, J. D. Gezelter, and B. J. Berne, Phys. Rev. Lett. 82, 3649 (1999).

    Article  ADS  Google Scholar 

  20. T. M. Truskett, S. Torquato, and P. G. Debenedetti, Phys. Rev. E 62, 993 (2000).

    Article  ADS  Google Scholar 

  21. A. M. Schmidt, J. Chem. Phys. 99, 4225 (1993).

    Article  ADS  Google Scholar 

  22. F. A. Lindemann, Phys. Z. 11, 609 (1910).

    MATH  Google Scholar 

  23. P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981); P. Steinhardt et al., Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  24. A. C. Mitus et al., J. Phys.: Condens. Matter 5, 8509 (1993); A. C. Mitus and A. Z. Patashinskii, Phys. Lett. A 87, 179 (1982); A. C. Mitus and A. Z. Patashinskii, Phys. Lett. A 88, 31 (1983).

    Article  ADS  Google Scholar 

  25. B. A. Klumov, S. A. Khrapak, and G. E. Morfill, Phys. Rev. B 83, 184105 (2011).

    Article  ADS  Google Scholar 

  26. S. A. Khrapak et al., Phys. Rev. Lett. 106, 205001 (2011).

    Article  ADS  Google Scholar 

  27. S. A. Khrapak et al., Phys. Rev. E 85, 066407 (2012).

    Article  ADS  Google Scholar 

  28. S. Nose and F. Yonezawa, J. Chem. Phys. 84, 1803 (1983).

    Article  ADS  Google Scholar 

  29. M. D. Rintoul and S. Torquato, J. Chem. Phys. 105, 9528 (1996).

    Article  Google Scholar 

  30. P. R. ten Wolde, R. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).

    Article  ADS  Google Scholar 

  31. B. A. Klumov, JETP Lett. 97, 327 (2013).

    Article  ADS  Google Scholar 

  32. B. A. Klumov and G. Morfill, JETP Lett. 96, 444 (2009); B. A. Klumov and G. Morfill, JETP Lett. 107, 908 (2008).

    Article  ADS  Google Scholar 

  33. B. A. Klumov et al., Plasma Phys. Controlled Fusion 51, 124028 (2009); B. A. Klumov et al., Europhys. Lett. 92, 15003 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.A. Klumov, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 5, pp. 296–302.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumov, B.A. On the behavior of indicators of melting: Lennard-Jones system in the vicinity of the phase transition. Jetp Lett. 98, 259–265 (2013). https://doi.org/10.1134/S0021364013180070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013180070

Keywords

Navigation