JETP Letters

, Volume 98, Issue 5, pp 285–288 | Cite as

Spin injection from topological insulator tunnel-coupled to metallic leads

  • P. P. AseevEmail author
  • S. N. Artemenko
Condensed Matter


We study theoretically helical edge states of 2D and 3D topological insulators (TI) tunnel-coupled to metal leads and show that their transport properties are strongly affected by contacts as the latter play a role of a heat bath and induce damping and relaxation of electrons in the helical states of TI. A simple structure that produces a pure spin current in the external circuit is proposed. The current and spin current delivered to the external circuit depend on relation between characteristic lengths: damping length due to tunneling, contact length and, in case of 3D TI, mean free path and spin relaxation length caused by momentum scattering. If the damping length due to tunneling is the smallest one, then the electric and spin currents are proportional to the conductance quantum in 2D TI, and to the conductance quantum multiplied by the ratio of the contact width to the Fermi wavelength in 3D TI.


JETP Letter Pure Spin Edge State Heat Bath Topo Logical Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Pesin and A. H. MacDonald, Nature Mater. 11, 409 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    S. Modak, K. Sengupta, and D. Sen, Phys. Rev. B 86, 205114 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    C. Brüne, A. Roth, H. Buhmann, et al., Nature Phys. 8, 485 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Sukhanov and V. A. Sablikov, J. Phys.: Condens. Matter 24, 405301 (2012).CrossRefGoogle Scholar
  5. 5.
    T. Pareek, Phys. Rev Lett. 92, 76601 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    F. Dolcini, Phys. Rev. B 83, 165304 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. König, H. Buhmann, L. W. Molenkamp, et al., J. Phys. Soc. Jpn. 77, 031007 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    H. Zhang, C.-X. Lium, X.-L. Qi, et al., Nature Phys. 5, 438 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).MathSciNetGoogle Scholar
  11. 11.
    N. B. Kopnin and A. S. Melnikov, Phys. Rev. B 84, 064524 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    T. D. Stanescu and S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    P. G. Silvestrov, P. W. Brouwer, and E. G. Mishchenko, Phys. Rev. B 86, 075302 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    P. Schwab, R. Raimondi, and C. Gorini, Europhys. Lett. 93, 67004 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  1. 1.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations