Abstract
The distribution of liquid 4He in different types of confinements—adsorbing and nonadsorbing aerogel on the basis of silicon dioxide SiO2 and an absorbing homogeneous strand—has been studied using the density functional theory. It has been demonstrated that the helium atoms tend to be adsorbed on the concave aerogel surface. It has been shown that, in the confinement with fractional mass dimension within certain scales, liquid helium also has a fractional mass dimension within these scales. The dependence of the energy of liquid helium on the number of atoms has been studied for different types of adsorbing surfaces. It has been established that the specific energy of liquid helium behaves differently in the cases of attractive and unattractive potentials with decreasing number of particles. This indicates that the system under consideration is nonextensive. Thus, the necessity of taking into account the surface effects and the fractional mass dimension in the studies of the properties of liquid helium in the restricted space geometry has been demonstrated.
This is a preview of subscription content, access via your institution.
References
G. Wong, P. Crowell, H. Cho, et al., Phys. Rev. Lett. 65, 2410 (1990).
J. Lye, L. Fallani, M. Modugno, et al., Phys. Rev. Lett. 95, 070401 (2005).
E. Kim and H. W. Chan, Nature 427, 225 (2004).
S. Balibar, A. D. Fefferman, A. Haziot, and X. Rojas, J. Low Temp. Phys. 168, 221 (2012).
D. Y. Kim and M. H. W. Chan, Phys. Rev. Lett. 109, 155301 (2012).
K. Yamamoto, Y. Shibayama, and K. Shirahama, Phys. Rev. Lett. 100, 195301 (2008).
Z. G. Cheng and M. H. W. Chan, New J. Phys. 15, 063030 (2013).
D. A. Tayurskii and Y. V. Lysogorskii, J. Low Temp. Phys. 158, 237 (2009).
D. A. Tayurskii and Y. V. Lysogorskiy, Chin. Sci. Bull. 56, 3617 (2011).
F. Dalfovo, A. Lastri, L. Pricaupenko, and S. Stringari, Phys. Rev. B 52, 1193 (1995).
S. Plimpton, J. Comput. Phys. 117, 1 (1995).
T. Y. Ng, J. J. Yeo, and Z. S. Liu, J. Non-Cryst. Solids 358, 1350 (2012).
J. Theiler, J. Opt. Soc. Am. A 7, 1055 (1990).
O. Talu and A. L. Myers, Colloids Surf. A: Physicochem. Eng. Aspects 187–188, 83 (2001).
G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
Materials Design 2012, Medea Version 2.10 (Materials Design, Angel Fire, NM, 2012).
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
A. V. Klochkov, V. V. Kuzmin, K. R. Safiullin, et al., JETP Lett. 88, 823 (2008).
C. Debras, D. Tayurskii, B. Minisini, and Y. Lysogor- skiy, J. Phys.: Conf. Ser. 324, 012029 (2011).
E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, et al., arXiv:1012.2461 (2010).
L. Lehtovaara, T. Kiljunen, and J. Eloranta, J. Comput. Phys. 194, 78 (2004).
C. Ou, W. Li, J. Du, et al., Physica A 387, 5761 (2008).
C. Enss and S. Hunklinger, Low-Temperature Physics (Springer, Berlin, Heidelberg, 2005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © Yu.V. Lysogorskiy, D.A. Tayurskii, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 4, pp. 236–241.
Rights and permissions
About this article
Cite this article
Lysogorskiy, Y.V., Tayurskii, D.A. Density functional theory simulation of liquid helium-4 in aerogel. Jetp Lett. 98, 209–213 (2013). https://doi.org/10.1134/S0021364013170104
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0021364013170104
Keywords
- Density Functional Theory
- JETP Letter
- Liquid Helium
- Helium Atom
- Silica Aerogel