Skip to main content

Density functional theory simulation of liquid helium-4 in aerogel

Abstract

The distribution of liquid 4He in different types of confinements—adsorbing and nonadsorbing aerogel on the basis of silicon dioxide SiO2 and an absorbing homogeneous strand—has been studied using the density functional theory. It has been demonstrated that the helium atoms tend to be adsorbed on the concave aerogel surface. It has been shown that, in the confinement with fractional mass dimension within certain scales, liquid helium also has a fractional mass dimension within these scales. The dependence of the energy of liquid helium on the number of atoms has been studied for different types of adsorbing surfaces. It has been established that the specific energy of liquid helium behaves differently in the cases of attractive and unattractive potentials with decreasing number of particles. This indicates that the system under consideration is nonextensive. Thus, the necessity of taking into account the surface effects and the fractional mass dimension in the studies of the properties of liquid helium in the restricted space geometry has been demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. G. Wong, P. Crowell, H. Cho, et al., Phys. Rev. Lett. 65, 2410 (1990).

    Article  ADS  Google Scholar 

  2. J. Lye, L. Fallani, M. Modugno, et al., Phys. Rev. Lett. 95, 070401 (2005).

    Article  ADS  Google Scholar 

  3. E. Kim and H. W. Chan, Nature 427, 225 (2004).

    Article  ADS  Google Scholar 

  4. S. Balibar, A. D. Fefferman, A. Haziot, and X. Rojas, J. Low Temp. Phys. 168, 221 (2012).

    Article  ADS  Google Scholar 

  5. D. Y. Kim and M. H. W. Chan, Phys. Rev. Lett. 109, 155301 (2012).

    Article  ADS  Google Scholar 

  6. K. Yamamoto, Y. Shibayama, and K. Shirahama, Phys. Rev. Lett. 100, 195301 (2008).

    Article  ADS  Google Scholar 

  7. Z. G. Cheng and M. H. W. Chan, New J. Phys. 15, 063030 (2013).

    Article  ADS  Google Scholar 

  8. D. A. Tayurskii and Y. V. Lysogorskii, J. Low Temp. Phys. 158, 237 (2009).

    Article  ADS  Google Scholar 

  9. D. A. Tayurskii and Y. V. Lysogorskiy, Chin. Sci. Bull. 56, 3617 (2011).

    Article  Google Scholar 

  10. F. Dalfovo, A. Lastri, L. Pricaupenko, and S. Stringari, Phys. Rev. B 52, 1193 (1995).

    Article  ADS  Google Scholar 

  11. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  12. T. Y. Ng, J. J. Yeo, and Z. S. Liu, J. Non-Cryst. Solids 358, 1350 (2012).

    Article  Google Scholar 

  13. J. Theiler, J. Opt. Soc. Am. A 7, 1055 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  14. O. Talu and A. L. Myers, Colloids Surf. A: Physicochem. Eng. Aspects 187–188, 83 (2001).

    Article  Google Scholar 

  15. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  16. Materials Design 2012, Medea Version 2.10 (Materials Design, Angel Fire, NM, 2012).

  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  18. A. V. Klochkov, V. V. Kuzmin, K. R. Safiullin, et al., JETP Lett. 88, 823 (2008).

    Article  ADS  Google Scholar 

  19. C. Debras, D. Tayurskii, B. Minisini, and Y. Lysogor- skiy, J. Phys.: Conf. Ser. 324, 012029 (2011).

    Article  ADS  Google Scholar 

  20. E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, et al., arXiv:1012.2461 (2010).

  21. L. Lehtovaara, T. Kiljunen, and J. Eloranta, J. Comput. Phys. 194, 78 (2004).

    Article  ADS  MATH  Google Scholar 

  22. C. Ou, W. Li, J. Du, et al., Physica A 387, 5761 (2008).

    Article  ADS  Google Scholar 

  23. C. Enss and S. Hunklinger, Low-Temperature Physics (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Lysogorskiy.

Additional information

Original Russian Text © Yu.V. Lysogorskiy, D.A. Tayurskii, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 98, No. 4, pp. 236–241.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lysogorskiy, Y.V., Tayurskii, D.A. Density functional theory simulation of liquid helium-4 in aerogel. Jetp Lett. 98, 209–213 (2013). https://doi.org/10.1134/S0021364013170104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013170104

Keywords

  • Density Functional Theory
  • JETP Letter
  • Liquid Helium
  • Helium Atom
  • Silica Aerogel