Skip to main content
Log in

Human cervical carcinoma detection and glucose monitoring in blood micro vasculatures with swept source OCT

  • Biophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We report a pilot method, i.e., speckle variance (SV) and structured optical coherence tomography to visualize normal and malignant blood microvasculature in three and two dimensions and to monitor the glucose levels in blood by analyzing the Brownian motion of the red blood cells. The technique was applied on nude live mouse’s skin and the obtained images depict the enhanced intravasculature network forum up to the depth of ∼2 mm with axial resolution of ∼8 μm. Microscopic images have also been obtained for both types of blood vessels to observe the tumor spatially. Our SV-OCT methodologies and results give satisfactory techniques in real time imaging and can potentially be applied during therapeutic techniques such as photodynamic therapy as well as to quantify the higher glucose levels injected intravenously to animal by determining the translation diffusion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lemelle, B. Veksler, I. S. Kozhevnikov, et al., Laser Phys. Lett. 6, 71 (2009).

    Article  ADS  Google Scholar 

  2. H. Ullah, G. Gilanie, M. Attique, et al., Laser Phys. 22, 1002 (2012).

    Article  ADS  Google Scholar 

  3. S. Oeltze and B. Preim, IEEE Trans. Med. Imaging 24, 540 (2005).

    Article  Google Scholar 

  4. N. Sharma and L. M Aggarwal, J. Med. Phys. 35, 3 (2010).

    Article  Google Scholar 

  5. T. Gambichler, G. Moussa, M. Sand, et al., J. Dermatol. Sci. 40, 85 (2005).

    Article  Google Scholar 

  6. H. Ullah, M. Atif, S. Firdous, et al., Laser Phys. Lett. 7, 889 (2010).

    Article  Google Scholar 

  7. B. Veksler, E. Kobzev, M. Bonesi, and I. Meglinski, Laser Phys. Lett. 5, 236 (2008).

    Article  ADS  Google Scholar 

  8. A. Goyal, J. Lee, P. Lamata, et al., IEEE Trans. Med. Imaging 32, 56 (2013).

    Article  Google Scholar 

  9. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, et al., IEEE Trans. Med. Imaging 24, 1369 (2005).

    Article  Google Scholar 

  10. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Progress Phys. 66, 239 (2003).

    Article  ADS  Google Scholar 

  11. M. Atif, H. Ullah, M. Y. Hamza, and M. Ikram, Laser Phys. Lett. 8, 629 (2011).

    Article  Google Scholar 

  12. J. G. Fujimoto, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).

    Google Scholar 

  13. Z. Hamdoon, W. Jerjes, T. Upile, and C. Hopper, Photodiagn. Photodyn. Ther. 8, 49 (2011).

    Article  Google Scholar 

  14. S. Gu, M. W. Jenkins, L. M. Peterson, et al., Dev. Dyn. 241, 534 (2012).

    Article  Google Scholar 

  15. J. G. Fujimoto, Nature Biotechnol. 21, 1361 (2003).

    Article  Google Scholar 

  16. H. Zhihong, M. Niemeijer, M. D. Abramoff, and M. K. Garvin, IEEE Trans. Med. Imaging 31, 1900 (2012).

    Article  Google Scholar 

  17. N. Sudheendran, S. H. Syed, M. E. Dickinson, et al., Laser Phys. Lett. 8, 247 (2011).

    Article  ADS  Google Scholar 

  18. A. Mariampillai, PhD Thesis (Dept. Med. Biophys., Univ. of Toronto, Toronto, 2010).

  19. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Dover, New York, 2000).

    Google Scholar 

  20. M. Brezinski, Optical Coherence Tomography Principles and Applications (Elsevier, San Diego, 2006).

    Google Scholar 

  21. M. Attique, G. Gilanie, Hafeez-Ullah, et al., PLoS ONE 7, e33616 (2012). doi:10.1371/journal.pone.0033616.

    Article  ADS  Google Scholar 

  22. G. Gilanie, M. Attique, Hafeez-Ullah, et al., Pattern Recogn. Lett. (2013).

    Google Scholar 

  23. M. Ninck, M. Untenberger, and T. Gisler, Biomed. Opt. Exp. 1, 1502 (2010).

    Article  Google Scholar 

  24. R. Dermietzel, D. Krause, M. Kremer, et al., Dev. Dyn. 193, 152 (1992).

    Article  Google Scholar 

  25. A. J. Barber and E. Lieth, Dev. Dyn. 208, 62 (1997).

    Article  Google Scholar 

  26. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, Opt. Express 15, 12636 (2007).

    Article  ADS  Google Scholar 

  27. L. Tremoleda, A. Kerton, and W. Gsell, Eur. J. Nucl. Med. Mol. Imaging 2, 1 (2012).

    Google Scholar 

  28. G. Hüttmann, Photodiagn. Photodyn. Ther. 8, 152 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ullah.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, H., Ahmed, E. & Ikram, M. Human cervical carcinoma detection and glucose monitoring in blood micro vasculatures with swept source OCT. Jetp Lett. 97, 690–696 (2013). https://doi.org/10.1134/S0021364013120126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013120126

Keywords

Navigation