Skip to main content
Log in

Peak and steady-state photocurrents in a molecular diode

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

It has been shown that the time evolution of a photocurrent under the conditions of the irradiation of a photochromic molecule by moderate-intensity light includes the fast and slow stages of the kinetic process. The fast stage corresponds to an increase in the current and is associated with the charging of the molecule, which is in a singlet excited state after a phototransition. The slow stage includes electron transfer between electrodes involving both charged and excited (singlet and triplet) states of the molecule. When the exchange interaction of unpaired electrons on the HOMO and LUMO levels of the photoexcited molecule is weak, the steady-state photocurrent is close in magnitude to the maximum transient current, whereas the steady-state current is suppressed when the exchange interaction is strong. The reason is that a molecule in the triplet state can block electron transfer between electrodes. The conditions have been found under which such blocking is a manifestation of the peak transient photocurrent that is formed immediately after the beginning of the irradiation of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molecular Electronic Devices, Ed. by F. L. Carter (Marcel Dekker, New York, 1982).

    Google Scholar 

  2. A. J. Aviram, Am. Chem. Soc. 110, 5687 (1988).

    Article  Google Scholar 

  3. V. Mujica, M. Kemp, and M. Ratner, J. Chem. Phys. 101, 6849 (1994).

    Article  ADS  Google Scholar 

  4. E. G. Petrov, I. S. Tolokh, A. A. Demidenko, and V. V. Gorbach, Chem. Phys. 193, 237 (1995).

    Article  Google Scholar 

  5. S. Datta, Electron Transfer in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  6. E. G. Petrov, Ukr. J. Phys. 43, 1630 (1998).

    Google Scholar 

  7. A. Nitzan, Ann. Rev. Phys. Chem. 52, 681 (2001).

    Article  ADS  Google Scholar 

  8. M. Galperin, M. A. Nitzan, and A. Ratner, J. Phys.: Condens. Matter 19, 103201 (2007).

    Article  ADS  Google Scholar 

  9. F. Chen and N. J. Tao, Acc. Chem. Res. 42, 429 (2009).

    Article  Google Scholar 

  10. P. Hänggi, M. Ratner, and S. Yaliraki, Chem. Phys. 281, 111 (2002).

    Article  Google Scholar 

  11. G. Cuniberti, G. F. Fagas, and K. Richter, Lecture Notes Phys. 680, 1 (2005).

    Article  ADS  Google Scholar 

  12. E. G. Petrov and M. V. Koval, Phys. Lett. A 372, 5651 (2008).

    Article  ADS  MATH  Google Scholar 

  13. E. G. Petrov, Ukr. J. Phys. 56, 721 (2011).

    Google Scholar 

  14. E. G. Petrov, Chem. Phys. 326, 151 (2006).

    Article  ADS  Google Scholar 

  15. E. G. Petrov, V. May, and P. Hänggi, Phys. Rev. B 73, 045408 (2006).

    Article  ADS  Google Scholar 

  16. S. Yasutomi, T. Morita, Y. Imanishi, and S. Kimura, Science 304, 5679 (2004).

    Article  Google Scholar 

  17. B. Leea, S. Takedaa, K. Nakajimab, et al., Biosensors Bioelectron. 19, 10 (2004).

    Google Scholar 

  18. C. B. Winkelmann, I. Ionica, X. Chevalier, et al., Nano Lett. 7, 1454 (2007).

    Article  ADS  Google Scholar 

  19. A. S. Kumar, T. Ye, T. Takami, et al., Nano Lett. 8, 1644 (2008).

    Article  ADS  Google Scholar 

  20. S. J. van der Molen, J. Liao, T. Kudernac, et al., Nano Lett. 9, 76 (2009).

    Article  ADS  Google Scholar 

  21. J. Lehmann, S. Kohler, V. May, and P. Hänggi, J. Chem. Phys. 121, 2278 (2004).

    Article  ADS  Google Scholar 

  22. M. Galperin and A. Nitzan, Phys. Rev. Lett. 95, 206802 (2005).

    Article  ADS  Google Scholar 

  23. B. D. Fainberg, M. Jouravlev, and A. Nitzan, Phys. Rev. B 76, 245329 (2007).

    Article  ADS  Google Scholar 

  24. J. Buker and G. Kirchenow, Phys. Rev. B 78, 125107 (2008).

    Article  ADS  Google Scholar 

  25. E. G. Petrov, V. O. Leonov, V. May, and P. Hänggi, Chem. Phys. 407, 53 (2012).

    Article  ADS  Google Scholar 

  26. V. M. Yashchuk, V. G. Syromyatnikov, T. Yu. Ogul’chansky, et al., Mol. Cryst. Liq. Cryst. 353, 287 (2000).

    Article  Google Scholar 

  27. E. G. Petrov, Ye. V. Shevchenko, V. May, and P. Hänggi, J. Chem. Phys. 134, 204701 (2011).

    Article  ADS  Google Scholar 

  28. L. I. Glazman and M. Pustilnik, in Nanophysics: Coherence and Transport, Ed. by H. Bouchiat, Y. Gefen, S. Gueron, et al. (Elsevier, Amsterdam, 2005), p. 427.

  29. L. Wang and V. May, Chem. Phys. 375, 252 (2010).

    Article  ADS  Google Scholar 

  30. H. Park, J. Park, A. Lim, et al., Nature 407, 57 (2000).

    Article  ADS  Google Scholar 

  31. A. Honciuc, A. Jaiswal, A. Gong, et al., J. Phys. Chem. B 109, 857 (2005).

    Article  Google Scholar 

  32. R. M. Metzger, Lect. Notes Phys. 680, 313 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Leonov.

Additional information

Original Russian Text © V.A. Leonov, E.G. Petrov, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 9, pp. 634–641.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonov, V.A., Petrov, E.G. Peak and steady-state photocurrents in a molecular diode. Jetp Lett. 97, 549–556 (2013). https://doi.org/10.1134/S0021364013090087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013090087

Keywords

Navigation