Skip to main content
Log in

Structural and magnetic phase transitions occurring in Pr0.7Sr0.3MnO3 manganite at high pressures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The crystal and magnetic structures and the vibrational spectra of Pr0.7Sr0.3MnO3 manganite are studied within the pressure range up to 25 GPa by methods of X-ray diffraction and Raman spectroscopy. Neutron diffraction studies have been performed at pressures up to 4.5 GPa. The magnetic phase transition from the ferromagnetic phase (T C = 273 K) to the A-type antiferromagnetic phase (T N = 153 K) is found at P ≈ 2 GPa. This transition is characterized by a broad pressure range corresponding to the phase separation. The Raman spectra of Pr0.7Sr0.3MnO3 measured under high pressures significantly differ from the corresponding spectra of the isostructural doped A1 − x A′ x MnO3 manganites, (where A is a rare-earth ion and A′ is an alkaline-earth ion) with the smaller average ionic radius 〈r A〉 of A and A′ cations. Namely, the former spectra do not include clearly pronounced stretching phonon modes. At P ∼ 7 GPa, there appears the structural phase transition from the orthorhombic phase with the Pnma space group to the orthorhombic high-pressure phase with the Imma symmetry. In the vicinity of the phase transition, anomalies in the pressure dependences of the lattice parameters, unit cell volume, and phonon frequencies corresponding to the characteristic lattice vibration modes are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colossal Magnetoresistance Oxides, Ed. by Y. Tokura (Gordon and Breach, New York, 2000), p. 358.

    Google Scholar 

  2. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  3. P. Postorino, A. Congeduti, P. Dore, et al., Phys. Rev. Lett. 91, 175501 (2003).

    Article  ADS  Google Scholar 

  4. A. Congeduti, P. Postorino, E. Caramagno, et al., Phys. Rev. Lett. 86, 1251 (2001).

    Article  ADS  Google Scholar 

  5. D. P. Kozlenko, S. E. Kichanov, V. I. Voronin, et al., JETP Lett. 82, 447 (2005).

    Article  ADS  Google Scholar 

  6. V. Laukhin, Phys. Rev. B 56, R10009 (1997).

    Article  ADS  Google Scholar 

  7. D. P. Kozlenko, T. A. Chan, A. V. Trukhanov, et al., JETP Lett. 94, 579 (2011).

    Article  ADS  Google Scholar 

  8. M. Baldini, L. Capogna, and M. Capone, J. Phys.: Condens. Matter 24, 045601 (2012).

    Article  ADS  Google Scholar 

  9. D. P. Kozlenko, I. N. Goncharenko, B. N. Savenko, and V. I. Voronin, J. Phys.: Condens. Matter 16, 6755 (2004).

    Article  ADS  Google Scholar 

  10. K. Knizek, Z. Jirák, E. Pollert, and F. Zounova, J. Solid State Chem. 100, 292 (1992).

    Article  ADS  Google Scholar 

  11. A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).

    Article  ADS  Google Scholar 

  12. N. A. Dubrovinskaia and L. S. Dubrovinsky, Rev. Sci. Instrum. 74, 3433 (2003).

    Article  ADS  Google Scholar 

  13. V. L. Aksenov, A. M. Balagurov, V. P. Glazkov, et al., Physica B 265, 258 (1999).

    Article  ADS  Google Scholar 

  14. V. P. Glazkov and I. N. Goncharenko, Fiz. Tekh. Vysok. Davl. 1, 56 (1991).

    Google Scholar 

  15. V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).

    Article  Google Scholar 

  16. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).

    Article  ADS  Google Scholar 

  17. W. Boujelben, A. Chiekh-Rouhou, M. Ellouze, and J. C. Joubert, Phys. Status Solidi A 177, 503 (2000).

    Article  ADS  Google Scholar 

  18. D. P. Kozlenko, T. A. Chan, C. E. Kichanov, et al., JETP Lett. 92, 590 (2010).

    Article  ADS  Google Scholar 

  19. A. M. Glazer, Acta Crystallogr. B 28, 3384 (1972).

    Article  Google Scholar 

  20. F. J. Birch, J. Geophys. Res. 91, 4949 (1986).

    Article  ADS  Google Scholar 

  21. I. V. Medvedeva, K. Marten, and Yu. S. Bersenev, Phys. Met. Metallogr. 97, 169 (2004).

    Google Scholar 

  22. Z. Fang, I. V. Solovyev, and K. Terakura, Phys. Rev. Lett. 84, 3169 (2000).

    Article  ADS  Google Scholar 

  23. M. V. Abrashev, J. Backstrom, L. Borjesson, et al., Phys. Rev. B 65, 184301 (2002).

    Article  ADS  Google Scholar 

  24. M. N. Iliev, M. V. Abrashev, and J. Laveriere, Phys. Rev. B 73, 064302 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Kichanov.

Additional information

Original Russian Text © N.T. Dang, D.P. Kozlenko, S.E. Kichanov, L.S. Dubrovinsky, Z. Jirák, D.M. Levin, E.V. Lukin, B.N. Savenko, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 9, pp. 624–629.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, N.T., Kozlenko, D.P., Kichanov, S.E. et al. Structural and magnetic phase transitions occurring in Pr0.7Sr0.3MnO3 manganite at high pressures. Jetp Lett. 97, 540–545 (2013). https://doi.org/10.1134/S0021364013090075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013090075

Keywords

Navigation